Theoretical calculation of newly synthesized tetrazolopyrimidine derivatives as a potential corrosion inhibitor Scientific paper

Main Article Content

Erdem Ergan
https://orcid.org/0000-0002-2985-6123
Nurullah Şeker
https://orcid.org/0000-0002-3221-5562
Begum Cagla Akbas
https://orcid.org/0000-0002-1926-9873
Esvet Akbas
https://orcid.org/0000-0001-6260-5556

Abstract

In this work, we wanted to define a general and comprehensive stra­tegy for the synthesis of tetrazolo[1,5-a]pyrimidine derivatives. For this pur­pose, we obtained new tetrazolo[1,5-a]pyrimidine molecules via the mercury-promoted desulfurization reaction, including hydrolysis, cyclizations, and eli­minations. All of the molecules were characterized by FT-IR, 1H-NMR, 13C-
-NMR, and elemental analysis. On the other hand, the potentials of compounds as corrosion inhibitors were calculated at B3LYP/6-31G (d, p) level via density functional theory (DFT).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
E. Ergan, N. Şeker, B. C. Akbas, and E. Akbas, “Theoretical calculation of newly synthesized tetrazolopyrimidine derivatives as a potential corrosion inhibitor: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 5, pp. 575–587, Mar. 2022.
Section
Theoretical Chemistry

Funding data

References

M. Lagrene, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss, Corrosion Sci. 44 (2002) 573 (https://doi.org/10.1016/S0010-938X(01)00075-0)

A. Yurt, S. Ulutas, H. Dal, Appl. Surf. Sci. 253 (2006) 919 (https://doi.org/10.1016/j.apsusc.2006.01.026)

S. Şafak, B. Duran, A. Yurt, G. Türkoğlu, Corros. Sci. 54 (2012) 25 (https://doi.org/10.1016/j.corsci.2011.09.026)

S. Shahabi, P. Norouzi, M. R. Ganjali, Int. J. Electrochem Sci. 10 (2015) 2646 (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.6592&rep=rep1&type=pdf)

J. Aljourani, M. A. Golozar, K. Raeissi, Mater. Chem. Phys. 121 (2010) 320 (https://doi.org/10.1016/j.matchemphys.2010.01.040)

A. Chetouani, A. Aouniti, B. Hammouti, N. Benchat, T. Benhadda, S. Kertit, Corros. Sci. 45 (2003) 1675 (https://doi.org/10.1016/S0010-938X(03)00018-0)

R. T. Loto, C. A. Loto, A P. I. Popoola, M. Ranyaoa, Int. J. Phys. Sci. 7 (2012) 2697 (https://www.researchgate.net/publication/313580988_Pyrimidine_derivatives_as_environmentally-friendly_corrosion_inhibitors_A_review)

K. Rasheeda, V. D. P. Alva, P. A. Krishnaprasad, S. Samshuddin, Int. J. Corros. Scale Inhib. 7 (2018) 48 (http://ijcsi.pro/papers/pyrimidine-derivatives-as-potential-corrosion-inhibitors-for-steel-in-acid-medium-an-overview/)

H. Dansena, H. J. Dhongade, K. Chandrakar, Asian J. Pharm. Clin. Res. 8 (2015) 171 (https://webcache.googleusercontent.com/search?q=cache:luNzlxY0zn8J:https://innovareacademics.in/journals/index.php/ajpcr/article/download/6283/2710+&cd=2&hl=tr&ct=clnk&gl=tr)

T. P. Selvam, C. R. James, P. V. Dniandev, S. K. Valzita, Research in Pharm. 2 (2012) 01 (https://updatepublishing.com/journal/index.php/rip/article/view/271)

M. Abdallah, E. A. Helal, A. S. Fouda, Corros. Sci. 48 (2006) 1639 (https://doi.org/10.1016/j.corsci.2005.06.020)

D-Q. Zhang, Q-R. Cai, X-M. He, L-X. Gao, G-D. Zhou, Mater. Chem. Phys. 112 (2008) 353 (https://doi.org/10.1016/j.matchemphys.2008.05.060)

M. A. Amin, M. M. Ibrahim, Corros. Sci. 53 (2011) 873 (https://doi.org/10.1016/j.corsci.2010.10.022)

N. A. Wazzan, I. Obot, S. Kaya, J. Mol. Liq. 221 (2016) 579 (https://doi.org/10.1016/j.molliq.2016.06.011)

B. Usman, I. Jimoh, B. A. Umar, Appl. J. Environ. Eng. Sci. 5 (2019) 66 (https://www.researchgate.net/publication/332195552_Theoretical_study_of_2_-3_4-dihydroxyphenyl_chroman-3_5_7-triol_on_corrosion_inhibition_of_mild_steel_in_acidic_medium)

Y. Atalay, F. Yakuphanoglu, M. Sekerci, D. Avcı, A. Başoğlu, Spectrochim. Acta, A 64 (2006) 68 (https://doi.org/10.1016/j.saa.2005.06.038)

E. E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, Int. J. Quantum Chem. 110 (2010) 1003 (https://doi.org/10.1002/qua.22249)

F. E. T. Heakal, S. A. Rizk, A. E. Elkholy, J. Mol. Struct. 1152 (2018) 328 (https://doi.org/10.1016/j.molstruc.2017.09.079)

E. Akbas, E. Yildiz, A. Erdogan, J. Serbian Chem. Soc. 85 (2020) 481 (https://doi.org/10.2298/JSC190326081A)

F. Shojaie, N. M. Baghini, Int. J. Ind. Chem. 6 (2015) 297 (https://doi.org/10.1007/s40090-015-0052-x)

Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, 2009 (http://gaussian.com/g09citation/)

E. Akbas, E. Ergan, E. Sahin, S. Ekin, M. Cakir, Y. Karakus, Phosphorus Sulfur Silicon Relat. Elem. 194 (2019) 796 (https://doi.org/10.1080/10426507.2018.1550489)

E. Akbas, A. Levent, S. Gumus, M. R. Sumer, I. Akyazi, Bull. Korean Chem. Soc. 31 (2010) 3632 (https://doi.org/10.5012/bkcs.2010.31.12.3632)

E. Akbas, S. Celik, E. Ergan, A. Levent, J. Chem. Sci. 131 (2019) 30 (https://doi.org/10.1007/s12039-019-1602-0)

E. Ergan, E. Akbas, A. Levent, E. Sahin, M. Konus, N. Seferoglu, J. Mol. Struct. 1136 (2017) 231 (https://doi.org/10.1016/j.molstruc.2017.02.001)

F. Aslanoglu, E. Akbas, M. Sonmez, B. Anil, Phosphorus Sulfur Silicon Relat. Elem. 182 (2007) 1589 (https://doi.org/10.1080/10426500701263554)

Y. K. Yang, K. J. Yook, J. Tae, J. Am. Chem. Soc. 127 (2005) 16760 (https://doi.org/10.1021/ja054855t)

K. C. Song, J. S. Kim, S. M. Park, K. C. Chung, S. Ahn, S. K. Chang, Org. Lett. 8 (2006) 3413 (https://doi.org/10.1021/ol060788b)

A. D. Becke, J. Chem. Phys. 96 (1992) 2155 (https://doi.org/10.1063/1.462066)

A. D. Becke, J. Chem. Phys. 98 (1993) 1372 (https://doi.org/10.1063/1.464913)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

Y. Karzazi, M. E. A. Belghiti, A. Dafali, B. Hammouti, J. Chem. and Pharm. Res. 6 (2014) 689 (https://www.jocpr.com/abstract/a-theoretical-investigation-on-the-corrosion-inhibition-of-mild-steel-by-piperidine-derivatives-in-hydrochloric-acid-sol-2763.html)

H. Zarrok, A. Zarrouk, R. Salghi, H. Oudda, B. Hammouti, M. Assouag, M. Taleb, M. Ebn Touhami, M. Bouachrine, S. Boukhris, J. Chem. Pharm. Res. 4 (2012) 5056 (https://www.jocpr.com/articles/gravimetric-and-quantum-chemical-studies-of-14acetyl24chlorophenylquinoxalin14hylacetone-as-corrosion-inhibitor-for-carb.pdf)

T. T. Adejumo, N. V. Tzouras, L. P. Zorba, D. Radanovic, A. Pevec, S. Grubišic, D. Mitic, K. K. Andelkovic, G. C. Vougiokalakis, B. Cobeljic, I. Turel, Molecules 25 (2020) 4043 (https://doi.org/10.3390/molecules25184043)

X. Li, S. Deng, H. Fu, T. Li, Electrochim. Acta 54 (2009) 4089 (https://doi.org/10.1016/j.electacta.2009.02.084)

N. Caliskan, E. Akbas, Mater. Corros. 63 (2012) 231 (https://doi.org/10.1002/maco.201005788)

N. Caliskan, E. Akbas, Mater. Chem. Phys. 126 (2011) 983 (https://doi.org/10.1016/j.matchemphys.2010.11.051)

R. Hasanov, M. Sadikoglu, S. Bilgic, Appl. Surf. Sci. 253 (2007) 3913 (https://doi.org/10.1016/j.apsusc.2006.08.025)

F. Bentiss, M. Lagrenée, J. Mater. Environ. Sci. 2 (2011) 13 (https://www.jmaterenvironsci.com/Document/vol2/3-JMES-62-2011-Bentiss2.pdf)

P. Udhayakala, T. V. Rajendiran, S. Gunasekaran, J. Advanced Sci. Res. 3 (2012) 71 (http://eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=1&sid=85d1e953-13bc-4e39-94f0-6c41acdeacb8%40sessionmgr102).