Synthesis, characterization and theoretical studies of novel pyrimidine derivatives as potential corrosion inhibitors

Main Article Content

Esvet Akbas
Ela Yildiz
Ahmet Erdogan

Abstract

In this study, five new pyrimidine derivatives were synthesized and characterized by characterization methods such as 1H-NMR, 13C-NMR, FT-
-IR and elemental analysis. The corrosion inhibition activity of the synthesized com­pounds was examined by theoretical calculation using DFT method at the level of B3LYP/6-31G (d,p). According to the calculations, 4-(6-benzoyl-2-
-ben­zylidene-3-oxo-7-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-5-yl)­benzoic acid (6) appears to be a good inhibitor for corrosion.

Downloads

Metrics

PDF views
592
Apr 28 '20May 01 '20May 04 '20May 07 '20May 10 '20May 13 '20May 16 '20May 19 '20May 22 '20May 25 '203.0
| |

Article Details

How to Cite
[1]
E. Akbas, E. Yildiz, and A. Erdogan, “Synthesis, characterization and theoretical studies of novel pyrimidine derivatives as potential corrosion inhibitors”, J. Serb. Chem. Soc., vol. 85, no. 4, pp. 481–492, Apr. 2020.
Section
Theoretical Chemistry

References

K. Rasheeda, V. D. P. Alva, P. A. Krishnaprasad S. Samshuddin, Int. J. Corros. Scale Inhib. 7 (2018) 48 (http://dx.doi.org/10.17675/2305-6894-2018-7-1-5)

S. Samshuddin, B. Narayana, H. S. Yathirajan, T.Gerber, E. Hosten, R. Betz, Acta Crystallogr., Sect. E: Struct. Rep. Online 68 (2012) 3271 (https://doi.org/10.1107/S1600536812044662)

Yu. I. Kapustin, A. G. Kholodkova, T. A. Vagramyan, Int. J. Corros. Scale Inhib. 7 (2018) 1 (http://dx.doi.org/10.17675/2305-6894-2018-7-1-1)

E. Akbas, A. Ruzgar, E. Sahin, E. Ergan, J. Heterocycl. Chem. 56 (2019) 1003 (https://doi.org/10.1002/jhet.3483)

E. Akbas, E. Ergan, E. Sahin, S. Ekin, M. Cakir, Y. Karakus, Phosphorus, Sulfur Silicon Relat. Elem. 194 (2019) 796 (https://doi.org/10.1080/10426507.2018.1550489)

Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, 2009 (http://gaussian.com/g09citation/)

G. Gece, Mater. Corros. 64 (2013) 940 (https://doi.org/10.1002/maco.201106482)

F. Shojaie, N. M. Baghini, Int. J. Ind. Chem. 6 (2015) 297 (https://doi.org/10.1007/s40090-015-0052-x)

E. Akbas, F. Aslanoglu, B. Anil, A. Sener, J. Heterocycl. Chem. 45 (2008) 1457 (https://doi.org/10.1002/jhet.5570450532)

E. Akbas, F. Aslanoglu, Phosphorus Sulfur, Silicon Relat. Elem. 183 (2008) 82 (https://doi.org/10.1080/10426500701557021)

E. Akbas, A. Erdogan, E. Ergan, M. Gulcan, A. Ruzgar, J. Chem. Soc. Pak. 39 (2017) 269 (https://doi.org/10.1007/s12039-019-1602-0)

A. Eschenmoser, C. E. Wintner, Science 196 (1977) 1410 https://doi.org/10.1126/science.867037)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Codens. Matter Mater. Phys. 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

S. A. X. Stango, U. Vijayalakshmi, J. Asian Ceram. Soc. 6 (2018) 20 (https://doi.org/10.1080/21870764.2018.1439608)

G. Gece, Corros. Sci. 50 (2008) 2981 (https://doi.org/10.1016/j.corsci.2008.08.043)

A. Popova, M. Christov, A. Zwetanova, Corros. Sci. 49 (2007) 2131 (https://doi.org/10.1016/j.corsci.2006.10.021)

R. G. Parr, L. Szentpaly, J. Am. Chem. Soc. 121 (1999) 1922 (https://pubs.acs.org/doi/10.1021/ja983494x)

P. K. Chattaraj, U. Sarkar, D. R. Roy, Chem. Rev. 106 (2006) 2065 (https://doi.org/10.1021/cr040109f)

C. Farley, N. V. S. D. K. Bhupathiraju, B. K. John, C. M. Drain, J. Phys. Chem. A 120 (2016) 7451 (https://pubs.acs.org/doi/10.1021/acs.jpca.6b07024)

A. D. Becke, J. Chem. Phys. 96 (1992) 2155 (https://doi.org/10.1063/1.462066)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913).