IR detection of the methane halides fluid-like state at ambient conditions Scientific paper

Main Article Content

Iosif Grinvald
https://orcid.org/0000-0002-5796-8624
Rostislav Vyacheslavovich Kapustin
https://orcid.org/0000-0002-2874-3282

Abstract

The paper presents the IR-study of the fluid-like state generated at ambient conditions for methane halides (iodomethane, tetrachloromethane, tri­chloromethane, and dichloromethane). It was shown that at vapor compres­sion-extension procedure realized in variable thickness spectral cell (VTOC), the dual phase state exhibiting both gas and liquid properties arises. A reversible tran­sition from a gas-like to a liquid-like shape, independent on the thermo­dynamic characteristics of the studied methane halides, was revealed.


 

Article Details

How to Cite
[1]
I. Grinvald and R. V. Kapustin, “IR detection of the methane halides fluid-like state at ambient conditions: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1067-1074, Nov. 2021.
Section
Physical Chemistry

References

E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, V. I. Bogdan, T. V. Bogdan, A. V. Bystrova, E. R. Gafarova, E. N. Golubeva, E. A. Grebenik, O. I. Gromov, V. A. Davankov, S. G. Zlotin, M. G. Kiselev, A. E. Koklin, Y. N. Kononevich, A. E. Lazhko, V. V. Lunin, S. E. Lyubimov, O. N. Martyanov, I. I. Mishanin, A. M. Muzafarov, N. S. Nesterov, A. Yu. Nikolaev, R. D. Oparin, O. O. Parenago, O. P. Parenago, Y. A. Pokusaeva, I. A. Ronova, A. B. Solovieva, M. N. Temnikov, P. S. Timashev, O. V. Turova, E. V. Filatova, A. A. Philippov, A. M. Chibiryaev, A. S. Shalygin, Russ. Chem. Rev. 89 (2020) 1337 (http://doi.org/10.1070/rcr4932)

K. Tutek, A. Masek, A. Kosmalska, S. Cichosz, Polymers 13 (2021) 729 (http://doi.org/10.3390/polym13050729)

F. Maxim, K. Karalis, P. Boillat, D. T. Banuti, J. I. Marquez Damian, B. Niceno, C. Ludwig, Adv. Sci. 8 (2021) 2002312 (http://doi.org/10.1002/advs.202002312)

T. Wu, B. Han, in Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series, B. Han, T. Wu, Eds., Springer, New York, 2019, p.173 (http://doi.org/10.1007/978-1-4939-9060-3_391)

G. N. Pack, M .C. Rotondaro, P. P. Shah, A. Mandal, S. Erramilli, L. D. Ziegler, Phys. Chem. Chem. Phys. 21 (2019) 21249 (http://doi.org/10.1039/c9cp04101j)

N. J. Hestand, S. E. Strong, L. Shi, J. L. Skinner, J. Chem. Phys. 150 (2019) 054505 (http://doi.org/10.1063/1.5079232)

B. K. Smith, Infrared Spectral interpretation, a systematical approach, CRC Press, Boca Raton, FL, 1999, p. 266 (http://www.doi.org/10.1201/9780203750841)

I. I. Grinvald, I. Yu. Kalagaev, A. N. Petukhov, R. V. Kapustin, Rus. J. Phys. Chem., A 93 (2019) 69 (http://doi.org/10.1134/S0036024419130107)

I. Grinvald, I. Kalagaev, A. Petukhov, A. Vorotyntsev, R. Kapustin, Struct. Chem. 30 (2019) 1659 (http://doi.org/10.1007/s11224-019-01349-2)

R. M. Stephenson, S. Malanowski, Handbook of the Thermodynamics of Organic Compounds, Springer, Dordrecht, 1987, p. 552 (http://doi.org/10.1007/978-94-009-3173-2)

I. I. Grinvald, I. Yu. Kalagaev, A. N. Petukhov, A. I. Grushevskaya, R. V. Kapustin, I. V. Vorotyntsev, J. Struct. Chem. 59 (2018) (http://doi.org/10.1134/S0022476618020087).