IR detection of the methane halides fluid-like state at ambient conditions Scientific paper
Main Article Content
Abstract
The paper presents the IR-study of the fluid-like state generated at ambient conditions for methane halides (iodomethane, tetrachloromethane, trichloromethane, and dichloromethane). It was shown that at vapor compression-extension procedure realized in variable thickness spectral cell (VTOC), the dual phase state exhibiting both gas and liquid properties arises. A reversible transition from a gas-like to a liquid-like shape, independent on the thermodynamic characteristics of the studied methane halides, was revealed.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, V. I. Bogdan, T. V. Bogdan, A. V. Bystrova, E. R. Gafarova, E. N. Golubeva, E. A. Grebenik, O. I. Gromov, V. A. Davankov, S. G. Zlotin, M. G. Kiselev, A. E. Koklin, Y. N. Kononevich, A. E. Lazhko, V. V. Lunin, S. E. Lyubimov, O. N. Martyanov, I. I. Mishanin, A. M. Muzafarov, N. S. Nesterov, A. Yu. Nikolaev, R. D. Oparin, O. O. Parenago, O. P. Parenago, Y. A. Pokusaeva, I. A. Ronova, A. B. Solovieva, M. N. Temnikov, P. S. Timashev, O. V. Turova, E. V. Filatova, A. A. Philippov, A. M. Chibiryaev, A. S. Shalygin, Russ. Chem. Rev. 89 (2020) 1337 (http://doi.org/10.1070/rcr4932)
K. Tutek, A. Masek, A. Kosmalska, S. Cichosz, Polymers 13 (2021) 729 (http://doi.org/10.3390/polym13050729)
F. Maxim, K. Karalis, P. Boillat, D. T. Banuti, J. I. Marquez Damian, B. Niceno, C. Ludwig, Adv. Sci. 8 (2021) 2002312 (http://doi.org/10.1002/advs.202002312)
T. Wu, B. Han, in Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series, B. Han, T. Wu, Eds., Springer, New York, 2019, p.173 (http://doi.org/10.1007/978-1-4939-9060-3_391)
G. N. Pack, M .C. Rotondaro, P. P. Shah, A. Mandal, S. Erramilli, L. D. Ziegler, Phys. Chem. Chem. Phys. 21 (2019) 21249 (http://doi.org/10.1039/c9cp04101j)
N. J. Hestand, S. E. Strong, L. Shi, J. L. Skinner, J. Chem. Phys. 150 (2019) 054505 (http://doi.org/10.1063/1.5079232)
B. K. Smith, Infrared Spectral interpretation, a systematical approach, CRC Press, Boca Raton, FL, 1999, p. 266 (http://www.doi.org/10.1201/9780203750841)
I. I. Grinvald, I. Yu. Kalagaev, A. N. Petukhov, R. V. Kapustin, Rus. J. Phys. Chem., A 93 (2019) 69 (http://doi.org/10.1134/S0036024419130107)
I. Grinvald, I. Kalagaev, A. Petukhov, A. Vorotyntsev, R. Kapustin, Struct. Chem. 30 (2019) 1659 (http://doi.org/10.1007/s11224-019-01349-2)
R. M. Stephenson, S. Malanowski, Handbook of the Thermodynamics of Organic Compounds, Springer, Dordrecht, 1987, p. 552 (http://doi.org/10.1007/978-94-009-3173-2)
I. I. Grinvald, I. Yu. Kalagaev, A. N. Petukhov, A. I. Grushevskaya, R. V. Kapustin, I. V. Vorotyntsev, J. Struct. Chem. 59 (2018) (http://doi.org/10.1134/S0022476618020087).