Formation of intermediate gas–liquid system in aromatics’ thin layers Scientific paper

Main Article Content

Rostislav Kapustin
https://orcid.org/0000-0002-2874-3282
Iosif Grinvald
https://orcid.org/0000-0002-5796-8624
Andrey Vorotyntsev
https://orcid.org/0000-0001-5447-5296
Anton Petukhov
https://orcid.org/0000-0002-4904-7622
Vladimir Vorotyntsev
Sergey Suvorov
https://orcid.org/0000-0003-1913-0764
Alexandra Baryscheva
https://orcid.org/0000-0003-4890-5194

Abstract

The present work discusses IR spectroscopic experiments and quan­tum-chemical DFT study of structure and intermolecular binding in the inter­mediate gas–liquid systems of aromatics, namely, benzene, furane, pyridine and thiophene. These systems can be generated in thin layers near a solid su­r­face by two different methods, depending on the physical properties of the sample. The first method includes evaporation with a subsequent compression of a sample in an optical cell of variable thickness, and it is applied to volatile components: benzene, furane, thiophene. For benzene and pyridine the second method is used, which involves a heating-initiated evaporation into a closed inter-window space with an after-cooling of a sample. It was shown that the formed layer is not an adsorbate or a condensate. The IR data obtained by these two methods lead to conclusion that the given systems of the considered aro­m­atics manifest dual gas–liquid spectral properties which can change each into other by varying external conditions. According to the DFT calculation results, the spatial arrangement in the aromatic thin layers can be described as a com­bination of π- and σ-bonded clusters, which simulate the gas and the liquid phase state properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Kapustin, “Formation of intermediate gas–liquid system in aromatics’ thin layers: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 3, pp. 267–281, Mar. 2023.
Section
Physical Chemistry

Funding data

References

D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev. 346 (2017) 2 (https://dx.doi.org/10.1016/j.ccr.2016.12.021)

I. I. Grinvald, I. Y. Kalagaev, A. N. Petukhov, A. I. Grushevskaya, R. V. Kapustin, I. V. Vorotyntsev, J. Struct. Chem. 59 (2018) 313 (https://dx.doi.org/10.1134/S0022476618020087)

M. A. Palafox, Phys. Sci. Rev. 3 (2018) (https://dx.doi.org/10.1515/psr-2017-0184)

B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach, 1st ed., CRC Press, Boca Raton, FL, 2018 (https://dx.doi.org/10.1201/9780203750841)

I. I. Grinvald, I. Y. Kalagaev, A. N. Petukhov, A. V. Vorotyntsev, R. V. Kapustin, Struct. Chem. 30 (2019) 1659 (https://dx.doi.org/10.1007/s11224-019-01349-2)

G. Szabó, D. Szieberth, L. Nyulászi, Struct. Chem. 26 (2015) 231 (https://dx.doi.org/10.1007/s11224-014-0543-y)

R. V. Kapustin, I. I. Grinvald, A. V. Vorotyntsev, A. N. Petukhov, V. I. Pryakhina, I. V. Vorotyntsev, React. Kin. Mech. Catal. 135 (2022) 835 (https://dx.doi.org/10.1007/s11144-022-02177-y)

E. S. Alekseev, A. Y. Alentiev, A. S. Belova, V. I. Bogdan, T. V. Bogdan, A. V. Bystrova, E. R. Gafarova, E. N. Golubeva, E. A. Grebenik, O. I. Gromov, V. A. Davankov, S. G. Zlotin, M. G. Kiselev, A. E. Koklin, Y. N. Kononevich, A. E. Lazhko, V. V. Lunin, S. E. Lyubimov, O. N. Martyanov, I. I. Mishanin, A. M. Muzafarov, N. S. Nesterov, A. Y. Nikolaev, R. D. Oparin, O. O. Parenago, O. P. Parenago, Y. A. Pokusaeva, I. A. Ronova, A. B. Solovieva, M. N. Temnikov, P. S. Timashev, O. V. Turova, E. V. Filatova, A. A. Philippov, A. M. Chibiryaev, A. S. Shalygin, Russ. Chem. Rev. 89 (2020) 1337 (https://dx.doi.org/10.1070/rcr4932)

N. J. Hestand, S. E. Strong, L. Shi, J. L. Skinner, J. Chem. Phys. 150 (2019) 054505 (https://dx.doi.org/10.1063/1.5079232)

I. I. Grinvald, R. V. Kapustin, J. Serb. Chem. Soc. 86 (2021) 1067 (https://dx.doi.org/10.2298/JSC210426048G)

M. I. Shakhparonov, Contemporary Problems of Physical Chemistry, Lomonosov Moscow State University Publishing House, Moscow, 1970

A. I. Abramovich, L. V. Lanshina, I. D. Kargin, Russ. Chem. Bull. 66 (2017) 828 (https://dx.doi.org/10.1007/s11172-017-1814-8)

I. D. Kargin, L. V. Lanshina, A. I. Abramovich, Russ. J. Phys. Chem., A 91 (2017) 1737 (https://dx.doi.org/10.1134/S003602441709014X)

A. I. Abramovich, Struct. Chem. 30 (2019) 545 (https://dx.doi.org/10.1007/s11224-019-01293-1)

I. I. Grinvald, I. Y. Kalagaev, A. N. Petukhov, R. V. Kapustin, Russ. J. Phys. Chem., A 93 (2019) 2645 (https://dx.doi.org/10.1134/S0036024419130107)

A. I. Abramovich, E. S. Alekseev, T. V. Bogdan, Russ. J. Phys. Chem., A 93 (2019) 2108 (https://dx.doi.org/10.1134/S0036024419110025)

I. I. Grinvald, I. Y. Kalagaev, R. V. Kapustin, in Density Functional Theory - Recent Advances, New Perspectives and Applications, D. Glossman-Mitnik, Ed., IntechOpen, London, 2022 (https://dx.doi.org/10.5772/intechopen.100429)

I. Y. Kalagaev, I. I. Grinvald, Pure Appl. Chem. 85 (2012) 135 (https://dx.doi.org/10.1351/PAC-CON-12-03-06)

S. Grimme, S. Ehrlich, L. Goerigh, J. Comput. Chem. 32 (2011) 1456 (https://dx.doi.org/10.1063/1.3382344)

D. G. A. Smith, L. A. Burns, K. Patkowsky, C. D. Sherrill, J. Phys. Chem. Lett. 7 (2016) 2197 (http://dx.doi.org/10.1021/acs.jpclett.6b00780)

R. Meyer, A. W. Hausera, J. Chem. Phys. 152 (2020) 084112 (https://doi.org/10.1063/1.5144603)

J. M. Mayer, Acc. Chem. Res. 44 (2011) 36 (https://dx.doi.org/10.1021/ar100093z).

Most read articles by the same author(s)