Application of biosynthesized metal nanoparticles in electrochemical sensors Review

Main Article Content

Totka Dodevska
https://orcid.org/0000-0002-5231-7347
Dobrin Hadzhiev
https://orcid.org/0000-0002-8056-1742
Ivan Shterev
https://orcid.org/0000-0002-0722-4600
Yanna Lazarova

Abstract

Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable atten­tion. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a conve­nient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and envi­ronmental analysis. The article is based on 157 references and provided a det­ailed overview on the main approaches for green synthesis of metal nano­par­ticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T. Dodevska, D. Hadzhiev, I. . Shterev, and Y. Lazarova, “Application of biosynthesized metal nanoparticles in electrochemical sensors: Review”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 401–435, Nov. 2021.
Section
Review

References

J. A. Dahl, B. L. S. Maddux, J. E. Hutchison, Chem. Rev. 107 (2007) 2228 (https://doi.org/10.1021/cr050943k)

G. Kratošová, V. Holišová, Z. Konvičková, A. P. Ingle, S. Gaikwad, K. Škrlová, A. Prokop, M. Rai, D. Plachá, Biotechnol. Adv. 37 (2019) 154 (https://doi.org/10.1016/j.biotechadv.2018.11.012)

C. C. Bonatto, L. P. Silva, Ind. Crop Prod. 58 (2014) 46 (http://dx.doi.org/10.1016/j.indcrop.2014.04.007)

M. Yehia, Sh. Labib, S. M. Ismail, Physica, B 446 (2014) 49 (http://dx.doi.org/10.1016/j.physb.2014.04.032)

V. K. Sharma, R. A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145 (2009) 83 (http://dx.doi.org/10.1016/j.cis.2008.09.002)

R. Narayanan, M. A. El-Sayed, J. Phys.Chem., B 109 (2005) 12663 (https://doi.org/10.1021/jp051066p)

G. P. Wiederrecht, G. A. Wurtz, J. Hranisavljevic, Nano Lett. 4 (2004) 2121 (http://dx.doi.org/10.1021/nl0488228)

M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27 (2009) 76 (http://dx.doi.org/10.1016/j.biotechadv.2008.09.002)

S. C. McBain, H. H. P. Yiu, J. Dobson, Int. J. Nanomedicine 3 (2008) 169 (https://doi.org/10.2147/IJN.S1608)

E. S. Kozlova, T. E. Nikiforova, Russ. J. Appl. Chem. 88 (2015) 638 (http://dx.doi.org/10.1134/S1070427215040151)

A. Yu. Olenin, G. V. Lisichkin, Russ. J. Appl. Chem. 91 (2018), 1393 (http://dx.doi.org/10.1134/S107042721809001X)

M. Holzinger, A. Le Goff, S. Cosnier, Front. Chem. 2 (2014) 63 (https://www.frontiersin.org/article/10.3389/fchem.2014.00063)

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem., B 109 (2005) 13857 (http://dx.doi.org/10.1021/jp0516846)

P. G. Jamkhande, N. W. Ghule, A. H. Bamer, M. G. Kalaskar, J. Drug Deliv. Sci. Technol. 53 (2019) 101174 (https://doi.org/10.1016/j.jddst.2019.101174)

D. Sharma, S. Kanchi, K. Bisetty, Arab. J. Chem. 12 (2019) 3576 (https://doi.org/10.1016/j.arabjc.2015.11.002)

S. Jadoun, R. Arif, N. K.Jangid, R. K. Meena, Environ. Chem. Lett. 19 (2021) 355 (https://doi.org/10.1007/s10311-020-01074-x)

A. Gour, N. K. Jain, Artif. Cells Nanomed. Biotechnol. 47 (2019) 844 (https://doi.org/10.1080/21691401.2019.1577878)

S. Rajawat, M. S. Qureshi, Arab. J. Sci. Eng. 39 (2014) 563 (http://dx.doi.org/10.1007/s13369-013-0879-4)

L. P. Silva, I. G. Reis, C. C. Bonatto, Green Processes for Nanotechnology, V. A. Basiuk, E. V. Basiuk (Eds.), Springer, Berlin, 2015 (http://dx.doi.org/10.1007/978-3-319-15461-9_9)

S. Iravani, Green Chem. 13 (2011) 2638 (http://dx.doi.org/10.1039/c1gc15386b)

A. Corciova, B. Ivanescu, J. Serb. Chem. Soc. 83 (2018) 515 (https://doi.org/10.2298/JSC170731021C)

A. K. Jha, K. Prasad, K. Prasad, A. R. Kulkarni, Colloids Surfaces, B 73 (2009) 219 (http://dx.doi.org/10.1016/j.colsurfb.2009.05.018)

M. Rai, A. Yadav, A. Gade, Crit. Rev. Biotechnol. 28 (2008) 277 (http://dx.doi.org/10.1080/07388550802368903)

O. V. Kharissova, H. V. Rasika Dias, B. I. Kharisov, B. O. Perez, V. M. J. Pere, Trends Biotechnol. 31 (2013) 240 (http://dx.doi.org/10.1016/j.tibtech.2013.01.003)

J. Y. Song, B. S. Kim, Bioprocess. Biosyst. Eng. 32 (2009) Article 79 (http://dx.doi.org/10.1007/s00449-008-0224-6)

S. P. Dubey, M. Lahtinen, M. Sillanpää, Process. Biochem. 45 (2010) 1065 (http://dx.doi.org/10.1016/j.procbio.2010.03.024)

A. D. Dwivedi, K. Gopal, Colloids Surfaces, A 369 (2010) 27 (http://dx.doi.org/10.1016/j.colsurfa.2010.07.020)

V. Armendariz, I. Herrera, J. R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago, J. L. Gardea-Torresdey, J. Nanopart. Res. 6 (2004) 377 (https://doi.org/10.1007/s11051-004-0741-4)

S. L. Smitha, D. Philip, K. G. Gopchandran, Spectrochim. Acta, A 74 (2009) 735 (https://doi.org/10.1016/j.saa.2009.08.007)

D. Philip, Spectrochim. Acta, A 77 (2010) 807 (http://dx.doi.org/10.1016/j.saa.2010.08.008)

S. P. Dubey, M. Lahtinen, M. Sillanpää, Colloids Surfaces, A 364 (2010) 34 (http://dx.doi.org/10.1016/j.colsurfa.2010.04.023)

Y. Shao, Y. Jin, S. Dong, J. Chem. Commun. 9 (2004) 1104 (http://dx.doi.org/10.1039/b315732f)

S. Shiv Shankar, A. Ahmad, R. Pasricha, M. Sastry, J. Mater. Chem. 13 (2003) 1822 (http://dx.doi.org/10.1039/B303808B)

S. K. Sivaraman, I. Elango, S. Kumar, V. Santhanam, Curr. Sci. 97 (2009) 1055 (https://scholar.google.com/scholar?oi=bibs&cluster=2564938837098274102&btnI=1&hl=bg)

J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology 18 (2007) 105104 (http://dx.doi.org/10.1088/0957-4484/18/10/105104)

K. B. Narayanan, N. Sakthivel, Adv. Colloid Interface Sci. 169 (2011) 59 (http://dx.doi.org/10.1016/j.cis.2011.08.004)

Y. N. Tan, J. Y. Lee, D. I. Wang, J. Am. Chem. Soc. 132 (2010) 5677 (http://dx.doi.org/10.1021/ja907454f)

Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, R. J. Linhardt, IET Nanobiotechnol. 5 (2011) 69 (http://dx.doi.org/10.1049/iet-nbt.2010.0033)

K. D. Arunachalam, S. K. Annamalai, S. Hari, Int. J. Nanomedicine 8 (2013) 1307 (http://dx.doi.org/10.2147/IJN.S36670)

X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, B. Shi, Green Chem. 13 (2011) 950 (http://dx.doi.org/10.1039/c0gc00724b)

K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Nanomed. Nanotechnol. Biol. Med. 6 (2010) 257 (http://dx.doi.org/10.1016/j.nano.2009.07.002)

M. G. Heinemann, C. H. Rosa, G. R. Rosa, D. Dias, Trends Environ. Anal. Chem. 30 (2021) e00129 (https://doi.org/10.1016/j.teac.2021.e00129)

S. H. Lee, B. H. Jun, Int. J. Mol. Sci. 20 (2019) 865 (https://doi.org/10.3390/ijms20040865)

L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, H. Xie, Theranostics 10 (2020) 8996 (https://doi.org/10.7150/thno.45413)

S. Ahmed, Saifullah, M. Ahmad, B. L. Swami, S. Ikram, J. Radiat. Res. Appl. Sci. 9 (2016) 1 (http://dx.doi.org/10.4172/2157-7439.1000309)

S. Ahmed, Annu, K. Manzoor, S. Ikram, J. Bionanosci. 10 (2016) 282 (http://dx.doi.org/10.1166/jbns.2016.1376)

S. Ahmed, S. Ikram, J. Nanomed. Nanotechnol. 6 (2015) Article 309 (http://dx.doi.org/10.4172/2157-7439.1000309)

K. Dziwon, J. Pulit-Prociak, M. Banach, Chemik: nauka- technika- rynek 69 (2015) 33 (http://miesiecznikchemik.pl/wp-content/uploads/2015/02/chemik_2015_01-4.pdf)

F. Luo, D. Yang, Z. Chen, M. Megharaj, R. Naidu, Sci. Total Environ. 562 (2016) 526 (http://dx.doi.org/10.1016/j.scitotenv.2016.04.060)

S. Venkateswarlu, B. N. Kumar, B. Prathima, B. K. Anitha, N. V. V. Jyothi, Phys., B 457 (2015) 30 (http://dx.doi.org/10.1016/j.physb.2014.09.007)

D. Pujol, C. Liu, N. Fiol, M. À. Olivella, J. Gominho, I. Villaescusa, H. Pereira, Crops Prod. 50 (2013) 494 (http://dx.doi.org/10.1016/j.indcrop.2013.07.051)

S. M. Ghoreishi, M. Behpour, M. Khayatkashani, Physica, E 44 (2011) 97 (http://dx.doi.org/10.1016/j.physe.2011.07.008)

K. Krishnaswamy, H. Vali, V. Orsat, J. Food Eng. 142 (2014) 210 (http://dx.doi.org/10.1016/j.jfoodeng.2014.06.014)

J. Zha, C. Dong, X. Wang, X. Zhang, X. Xiao, X. Yang, Optik – Int. J. Light Electron. Optics 144 (2017) 511 (http://dx.doi.org/10.1016/j.ijleo.2017.06.088)

L. Marchiol, Ital. J. Agron. 7 (2012) 274 (https://doi.org/10.4081/ija.2012.e37)

S. Ahmed, Annu, S. Ikram, S. S. Yudha, J. Photochem. Photobiol., B 161 (2016) 141 (http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034)

G. Sharmila, M. F. Fatima, S. Haries, S. Geetha, N. M. Kumar, C. Muthukumaran, J. Mol. Struct. 1138 (2017) 35 (http://dx.doi.org/10.1016/j.molstruc.2017.02.097)

M. Nasrollahzadeh, S. M. Sajadi, M. Maham, J. Mol. Catal., A 396 (2015) 297 (http://dx.doi.org/10.1016/j.molcata.2014.10.019)

H. S. Devi, T. D. Singh, Adv. Electron. Electr. Eng. 4 (2014) 83 (http://www.ripublication.com/aeee_spl/aeeev4n1spl_12.pdf)

S. Gunalan, R. Sivaraj, V. Rajendran, J. Prog. Nat. Sci.: Mater. Int. 22 (2012) 693 (http://dx.doi.org/10.1016/j.pnsc.2012.11.015)

K. R. Reddy, J. Mol. Struct. 1150 (2017) 553 (http://dx.doi.org/10.1016/j.molstruc. 2017. 09.005)

J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Appl. Catal., A 406 (2011) 51 (http://dx.doi.org/10.1016/j.apcata.2011.08.007)

A. Y. Ghidan, T. M. Al-Antary, A. M. Awwad, Environ. Nanotechnol. Monit. Manage. 6 (2016) 95 (http://dx.doi.org/10.1016/j.enmm.2016.08.002)

F. Ijaz, S. Shahid, S. A. Khan, W. Ahmad, S. Zaman, Trop J. Pharm. Res. 16 (2017) 743 (http://dx.doi.org/10.4314/tjpr.v16i4.2)

S. Ahmed, Annu, S. A. Chaudhry, S. Ikram, J. Photochem. Photobiol., B 166 (2017) 272 (http://dx.doi.org/10.1016/j.jphotobiol.2016.12.011)

A. S. H. Hameed, C. Karthikeyan, A. P. Ahamed, N. Thajuddin, N. S. Alharbi, S. Ali Alharbi, G. Ravi, Sci. Rep. 6 (2016) 24312 (http://dx.doi.org/10.1038/srep24312)

A. Nasajpour, S. Mandla, S. Shree, E. Mostafavi, R. Sharifi, A. Khalilpour, S. Saghazadeh, S. Hassan, M. J. Mitchell, J. Leijten, X. Hou, A. Moshaverinia, N. Annabi, R. Adelung, Y. K. Mishra, S. R.Shin, A. Tamayol, A. Khademhosseini, Nano Lett. 17 (2017) 6235 (http://dx.doi.org/10.1021/acs.nanolett.7b02929)

N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, Appl. Surf. Sci. 406 (2017) 339 (https://doi.org/10.1016/j.apsusc.2017.01.219)

O. J. Nava, C. A. Soto-Robles, C.M. Gomez-Gutierrez, A.R. Vilchis-Nestor, A. Castro-

-Beltran, A. Olivas, P.A. Luque, J. Mol. Struct. 1147 (2017) 1 (http://dx.doi.org/10.1016/j.molstruc.2017.06.078)

J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16 (2018) Article 84 (https://doi.org/10.1186/s12951-018-0408-4)

A. Mishra, S. K. Tripathy, S.-I. Yun, J. Nanosci. Nanotechnol. 11 (2011) 243 (https://doi.org/10.1166/jnn.2011.3265)

A. Mewada, G. Oza, S. Pandey, M. Sharon, J. Microbiol. Biotech. Res. 2 (2012) 493 (https://scholar.google.co.in/scholar?oi=bibs&cluster=14114070047215590546&btnI=1&hl=en)

B. Syed, N. Prasad, S. Satisha, J. Microsc. Ultrastruct. 4 (2016) 162 (http://dx.doi.org/10.1016/j.jmau.2016.01.004)

B. S. Srinath, V. R. Rai, Mater. Lett. 146 (2015) 23 (http://dx.doi.org/10.1016/j.matlet.2015.01.151)

P. Luo, Y. Liu, Y. Xia, H. Xu, G. Xie, Biosens. Bioelectron. 54 (2014) 217 (http://dx.doi.org/10.1016/j.bios.2013.11.013)

N. Noah, in Micro and Nano Technologies, A. Shukla, S. Iravani (Eds.), Elsevier Inc., Amsterdam, 2019, p. 111 (ISBN 978-0-08-102579-6)

L. Li, Z. Zhang, Int. J. Electrochem. Sci. 11 (2016) 4550 (http://dx.doi.org/10.20964/2016.06.13)

J. Venkatesan, P. Manivasagan, S.-K. Kim, A. V. Kirthi, S. Marimuthu, A. A. Rahuman, Bioprocess Biosyst. Eng. 37 (2014) 1591 (http://dx.doi.org/10.1007/s00449-014-1131-7)

L. Castro, M. L. Blazquez, J. A. Muñoz, F. González, A. Ballester, IET Nanobiotechnol. 7 (2013) 109 (http://dx.doi.org/10.1049/iet-nbt.2012.0041)

G. Singaravelu, J. S. Arockiamary, V. G. Kumar, K. Govindaraju, Colloids Surfaces, B 57 (2007) 97 (http://dx.doi.org/10.1016/j.colsurfb.2007.01.010)

Y.-L. Chen, H.-Y. Tuan. C.-W. Tien, Y.-C. Hu, Biotechnol. Prog. 25 (2009) 1260 (http://dx.doi.org/10.1002/btpr.199)

P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanoparticle Res. 10 (2008) 507 (http://dx.doi.org/10.1007/s11051-007-9275-x)

E. Asadian, M. Ghalkhani, S. Shahrokhian, Sensors Actuators, B 293 (2019) 183 (https://doi.org/10.1016/j.snb.2019.04.075)

J. M. George, A. Antony, B. Mathew, Microchim. Acta 185 (2018) Article 358 (https://doi.org/10.1007/s00604-018-2894-3)

L. Lu, X. Hu, Z. Zhu, Z. D. Li, S. Tian, Z Chen, J. Electrochem. Soc. 167 (2020) Article 037512 (http://dx.doi.org/10.1149/2.0122003JES)

V. S. Manikandan, B. R. Adhikari, A. Chen, Analyst 143 (2018) 4537 (http://dx.doi.org/10.1039/C8AN00497H)

G. Maduraiveeran, W. Jin, Trends Environ. Anal. 13 (2017) 10 (http://dx.doi.org/10.1016/j.teac.2017.02.001)

R. M. Kakhki, Russ. J. Appl. Chem. 89 (2016) 480 (https://link.springer.com/article/10.1134/S10704272160030204)

R. Ramachandran, S. M. Chen, T. Baskar, P. Elumalai, P. Raja, T. Chen, R. Kannan, D. Kannaiyan, G. K. George, Inorg. Chem. Front. 6 (2019) 3418 (http://dx.doi.org/10.1039/C9QI00602H)

G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103 (2018) 113 (https://doi.org/10.1016/j.bios.2017.12.031)

A. Joshi, K.-H. Kim, Biosens. Bioelectron. 153 (2020) Article 112046 (https://doi.org/10.1016/j.bios.2020.112046)

V. Shukla, R. Yadav, P. Yadav, A. C. Pandey, J. Hazard. Mater. 213–214 (2012) 161 (https://doi.org/10.1016/j.jhazmat.2012.01.071)

S. Momeni, I. Nabipour, Appl. Biochem. Biotechnol. 176 (2015) 1937 (https://doi.org/10.1007/s12010-015-1690-3)

Y. L. Lazarova, T. M. Dodevska, A. M. Slavov, D. B. Karashanova, B. G. Georgieva, Bulg. Chem. Commun. 51 (2019) 192 (http://www.bcc.bas.bg/BCC_Volumes/Volume_51_Special_D_2019/BCC-51-D-2019-192-197-Lazarova-40.pdf)

K. Murtada, V. Moreno, J. Electroanal. Chem. 861 (2020) Article 113988 (http://dx.doi.org/10.1016/j.jelechem.2020.113988)

N. H. Martin, A. Friedlander, A. Mok, D. Kent, M. Wiedmann, K. J. Boor, J. Food Prot. 77 (2014) 1809 (https://doi.org/10.4315/0362-028X.JFP-14-074)

S. Arefin, M. A. H. Sarker, M.A. Islam, Md. H. Rashid, Md. N. Islam, J. Adv. Vet. Anim. Res. 4 (2017) 371 (http://doi.org/10.5455/javar.2017.d236)

I. A. Ansari, A. K. Datta, Trans IChemE 81 (2003) 57 (https://doi.org/10.1205/096030803765208670)

X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao, Electrochim. Acta 56 (2011) 3170 (http://doi.org/10.1016/j.electacta.2011.01.058)

X. Song, X. Wang, Y. Zheng, R. Ma, H. Y. Yin, J. Nanopart. Res. 13 (2011) 5449 (http://doi.org/10.1007/s11051-011-0532-7)

J. B. Raoof, R. Ojani, E. Hasheminejad, S. Rashid-Nadimi, Appl. Surf. Sci. 258 (2012) 2788 (http://doi.org/10.1016/j.apsusc.2011.10.133)

L. Zhong, S. Gan, X. Fu, F. Li, D. Han, L. Guo, L. Niu, Electrochim. Acta 89 (2013) 222 (http://dx.doi.org/10.1016/j.electacta.2012.10.161)

A. M. Noor, M. M. Shahid, P. Rameshkumar, N. M. Huang, Microchim. Acta 183 (2016) 911 (http://dx.doi.org/10.1007/s00604-015-1679-1)

Y. Yang, X. Zheng, J. Zheng, RSC Adv. 6 (2016) 58329 (http://dx.doi.org/10.1039/C6RA06366G)

P. Salazar, I. Fernández, M. C. Rodríguez, A. Hernandez-Creus, J. L. Gonzalez-Mora, J. Electroanal. Chem. 855 (2019) Article 113638 (https://doi.org/10.1016/j.jelechem.2019.113638)

M. Salve, A. Mandal, K. Amreen, K. P. Pattnaik, S. Goel, Microchem. J. 157 (2020) 104973 (https://doi.org/10.1016/j.microc.2020.104973)

T. Dodevska, I. Vasileva, P. Denev, D. Karashanova, B. Georgieva, D. Kovacheva, N. Yantcheva, A. Slavov, Mater. Chem. Phys. 231 (2019) 335 (https://doi.org/10.1016/j.matchemphys.2019.04.030)

R. B. Pegg, F. Shahidi, Nitrie Curing of Meat, Food & Nutrition Press Inc., Trumbull, CT, 2008 (https://scholar.google.com/scholar?oi=bibs&cluster=4739977734055126615&btnI=1&hl=en)

World Health Organization, Guidelines for Drinking-Water Quality: Fourth Edition In¬corporating the First Addendum, WHO, Geneva, 2017 (ISBN-13: 978-92-4-154995-0)

P. K. Rastogi, V. Ganesan, S. Krishnamoorthi, J. Mater.Chem., A 2 (2014) 933 (https://doi.org/10.1039/c3ta13794e)

E. Beamonte, J. D. Bermudez, A. Casino, E. Veres, J. Environ. Manage. 83 (2007) 307 (https://doi.org/10.1016/j.jenvman.2006.03.010)

D. Zhang, H. Ma, Y. Chen, H. Pang, Y. Yu, Anal. Chim. Acta 792 (2013) 35 (http://dx.doi.org/10.1016/j.aca.2013.07.010)

M. Karwowska, A. Kononiuk, Antioxidants (Basel) 9 (2020) 241 (http://dx.doi.org/10.3390/antiox9030241)

T. Dodevska, I. Shterev, Y. Lazarova, Acta Chim. Slov. 65 (2018) 970 (http://dx.doi.org/10.17344/acsi.2018.4672)

M. Shivakumar, K. L. Nagashree, S. Manjappa, M. S. Dharmaprakash, Electroanalysis 29 (2017) 1434 (http://dx.doi.org/10.1002/elan.201600775)

M. Varvara, G. Bozzo, G. Celano, C. Disanto, C. N. Pagliarone, G. V. Celano, Ital. J. Food Saf. 5 (2016) 4313 (http://dx.doi.org/10.4081/ijfs.2016.4313)

S. Kawashima, T. Funakoshi, Y. Sato, N. Saito, H. Ohsawa, K. Kurita, K. Nagata, M. Yoshida, A. Ishigami, Sci. Rep. 8 (2018) 16199 (https://doi.org/10.1038/s41598-018-34530-4)

F. Miao, M.-Y. Su, S. Jiang, L.-F. Luo, Y. Shi, T.-C. Lei, Oxidative Med. Cell. Longev. (2019) Article ID 2084805 (https://doi.org/10.1155/2019/2084805)

K. Dhara, R. M. Debiprosad, Anal. Biochem. 586 (2019) 113415 (https://doi.org/10.1016/j.ab.2019.113415)

M. A. Khalilzadeh, M. Borzoo, J. Food Drug Anal. 24 (2016) 796 (http://dx.doi.org/10.1016/j.jfda.2016.05.004)

V. Sreenivasulu, N. Siva Kumar, M. Suguna, M. Asif, E. H. Al-Ghurabi, Z. X. Huang, Z. Zhen, Int. J. Electrochem. Sci. 11 (2016) 9959 (http://dx.doi.org/10.20964/2016.12.69)

R. Sakthivel, S. Palanisamy, S.-M. Chen, S. Ramaraj, V. Velusamy, P. Yi-Fan, J. M. Hall, S. K. Ramaraj, J. Taiwan Inst. Chem. Eng. 80 (2017) 663 (http://dx.doi.org/10.1016/j.jtice.2017.08.047)

M. Shivakumar, M. S. Dharmaprakash, S. Manjappa, K. L. Nagashree, J. Iran. Chem. Soc. 17 (2020) 893 (https://doi.org/10.1007/s13738-019-01822-z)

R. Karthik, M. Govindasamy, S.-M. Chen, Y.-H. Cheng, P. Muthukrishnan, S. Padmavathy, A. Elangovan, J. Photoch. Photobiol., B 170 (2017) 164 (http://dx.doi.org/10.1016/j.jphotobiol.2017.03.018)

C. Karuppiah, K. Muthupandi, S.-M. Chen, M. A. Ali, P. Selvakumar, A. Rajan, P. Prakash, F. M. A. Al-Hemaid, B.-S. Lou, RSC Adv. 5 (2015) 31139 (http://dx.doi.org/10.1039/C5RA00992H)

J. Bastos-Arrieta, A. Florido, C. Pérez-Ràfols, C. N. Serrano, N. Fiol, J. Poch, I. Villaescusa, J. Nanomater. 8 (2018) 946 (http://dx.doi.org/10.3390/nano8110946)

M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda, Interdiscip. Toxicol. 7 (2014) 60 (http://dx.doi.org/10.2478/intox-2014-0009)

H. S. Kim, Y. J. Kim, Y. R. Seo, J. Cancer Prev. 20 (2015) 232 (http://dx.doi.org/10.15430/JCP.2015.20.4.232)

G. G. Kumar, K. J. Babu, K. S. Nahm, Y. J. Hwang, RSC Adv. 4 (2014) 7944 (http://dx.doi.org/10.1039/c3ra45596c)

Y. Zheng, A. Wang, W. Cai, Z. Wang, F. Peng, Z Liu, L. Fu, Enzyme Microb. Technol. 95 (2016) 112 (http://dx.doi.org/10.1016/j.enzmictec.2016.05.010)

F. Chekin, S. Bagheri, S. Abd Hamid, J. Chin. Chem. Soc. 61 (2014) 631 (http://dx.doi.org/10.1002/jccs.201300463)

R. Liu, Y. Wei, J. Zheng, H. Zhang, Q. Sheng, Chin. J. Chem. 31 (2013) 1519 (http://dx.doi.org/10.1002/cjoc.201300487)

K. Ramachandran, D. Kalpana, Y. Sathishkumar, Y. S. Lee, K. Ravichandran, G. G. Kumar, J. Ind. Eng. Chem. 35 (2016) 29 (http://dx.doi.org/10.1016/j.jiec.2015.10.033)

R. A. Dar, N. G. Khare, D. P. Cole, S. P. Karna, A. K. Srivastava, RSC Adv. 4 (2014) 14432 (http://dx.doi.org/10.1039/c4ra00934g)

T. Dayakar, K. V. Rao, J. Park, K. K. Sadasivuni, K. R. Rao, N. J. Rambabu, Mater. Chem. Phys. 216 (2018) 502 (https://doi.org/10.1016/j.matchemphys.2018.05.046)

S. H. Mohd Taib, K. Shameli, P. M. Nia, M. Etesami, M. Miyake, R. R. Ali, E. Abouzari-

-Lotf, Z. Izadiyan, J. Taiwan Inst. Chem. Eng. 95 (2019) 616 (https://doi.org/10.1016/j.jtice.2018.09.021)

R. Emmanuel, C. Karuppiah, S.-M. Chen, S. Palanisamy, S. Padmavathy, P. Prakash, J. Hazard. Mater. 279 (2014) 117 (http://dx.doi.org/10.1016/j.jhazmat.2014.06.066)

R. Karthik, S.-M. Chen, A. Elangovan, P. Muthukrishnan, R. Shanmugam, B.-S. Lou, J. Colloid Interface Sci. 468 (2016) 163 (http://dx.doi.org/10.1016/j.jcis.2016.01.046)

R. Karthik, M. Govindasamy, S.-M. Chen, V. Mani, B.-S. Lou, R. Devasenathipathy, Y.-S. Hou, A. Elangovan, J. Colloid Interface Sci. 475 (2016) 46 (http://dx.doi.org/10.1016/j.jcis.2016.04.044)

D. Gobelli, N. M. Correa, M. Barroso, F. Moyano, P. G. Molina, Electroanalysis 27 (2015) 1883 (http://dx.doi.org/10.1002/elan.201500022)

P. Gnanaprakasam, S. E. Jeena, D. Premnath, T. Selvaraju, Electroanalysis 28 (2016) 1885 (http://dx.doi.org/10.1002/elan.201600002)

A. Pani, T. D. Thanh, N. H. Kim, J. H. Lee, S.-Il Yun, IET Nanobiotechnol. 10 (2016) 431 (http://dx.doi.org/10.1049/iet-nbt.2016.0017)

M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma, Chem. Rev. 116 (2016) 3722 (http://dx.doi.org/10.1021/acs.chemrev.5b00482)

S. Momeni, F. Sedaghati, Microchem. J. 143 (2018) 64 (https://doi.org/10.1016/j.microc.2018.07.035)

A. Allegra, G. Spatari, S. Mattioli, S. Curti, V. Innao, R. Ettari, A. G. Allegra, C. Giorgianni, S. Gangemi, C. Musolino, Medicina (Kaunas) 55 (2019) Article 638 (https://doi.org/10.3390/medicina55100638)

S. Sukumar, A. Rudrasenan, D. P. Nambiar, ACS Omega 5 (2020) 1040 (https://doi.org/10.1021/acsomega.9b02857)

J. S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N. C. Murmu, T. Kuila, Electrochim. Acta 193 (2016) 104 (http://dx.doi.org/10.1016/j.electacta.2016.02.069)

B. Amanulla, S. Palanisamy, S.-M. Chen, V. Velusamy, T.-W. Chiu, T.-W. Chen, S. K. Ramaraj, J. Colloid Interface Sci. 487 (2017) 370 (http://dx.doi.org/10.1016/j.jcis.2016.10.050)

K. S. Prasad, J. V. Vaghasiya, S. S. Soni, J. Patel, R. Patel, M. Kumari, F. Jasmani, K. Selvaraj, Appl. Biochem. Biotechnol. 6 (2015) 1386 (http://dx.doi.org/10.1007/s12010-015-1814-9)

R. Karthik, R. Sasikumar, S.-M. Chen, M. Govindasamy, J.V. Kumar, V. Muthuraj, Int. J. Electrochem. Sci. 11 (2016) 8245 (http://dx.doi.org/10.20964/2016.10.62)

V. Kumar, K. Singh, S. Panwar, S. K. Mehta, Int. Nano Lett. 7 (2017) 123 (http://dx.doi.org/10.1007/s40089-017-0205-3)

E. Ahmed, K. Nagaoka, M. Fayez, M. Abdel-Daim, H. Samir, G. Watanabe, Environ. Sci. Pollut. Res. 22 (2015) 10930 (https://doi.org/10.1007/s11356-015-4245-9)

H. Zhang, K. Taya, K. Nagaoka, M. Yoshida, G. Watanabe, Environ. Pollut. 229 (2017) 1 (https://doi.org/10.1016/j.envpol.2017.04.088)

S. Ren, Y. Li, C. Li, Gen. Comp. Endocr. 301 (2021) 113656 (https://doi.org/10.1016/j.ygcen.2020.113656)

K. Mallikarjuna, Y. V. M. Reddy, B. Sravani, B. G. Madhavi, H. Kim, S. Agarwal, V. K. Gupta, J. Electroanal. Chem. 822 (2018) 163 (https://doi.org/10.1016/j.jelechem.2018.05. 019)

X. Fuku, M. Modibedi, M. Mathe, SN Appl. Sci. 2 (2020) Article 902 (https://doi.org/10.1007/s42452-020-2704-5)

F. Chekin, S. M. Vahdat, M. J. Asadi, Russ. J. Appl. Chem. 89 (2016) 816 (https://doi.org/10.1134/S1070427216050219).

Similar Articles

You may also start an advanced similarity search for this article.