Antioxidant activity according to bioactive compounds content in dried pumpkin waste Scientific paper

Main Article Content

Sladjana Stajčić
https://orcid.org/0000-0002-0611-0011
Lato Pezo
https://orcid.org/0000-0002-0704-3084
Gordana Ćetković
Jasna Čanadanović-Brunet
https://orcid.org/0000-0003-1154-1366
Anamarija Mandić
Vesna Tumbas Šaponjac
https://orcid.org/0000-0003-1925-6500
Jelena Vulić
https://orcid.org/0000-0001-9349-7367
Vanja Travičić
https://orcid.org/0000-0003-0302-0851
Miona Belović
https://orcid.org/0000-0002-1547-9072

Abstract

In this study freeze-drying and oven-drying (at 50 and 65 °C) were applied for the preparation of dried pumpkin waste. The effect of drying methods on physical properties (moisture content, water activity, hygro­scopic­ity, water solubility, bulk and tapped density, flowability and colour), content of bioactive compounds (carotenoids and phenolics) and antioxidant activity were investigated. Also, the influence of one-year storage at –20 °C on the bio­active compounds content and the antioxidant activity of dried pumpkin waste was examined. Results indicated that drying method showed a significant imp­act on the investigated characteristics. Bioactive compounds content and anti­oxidant activity by DPPH test of freeze-dried were higher than of oven-dried pumpkin waste, while higher antioxidant activity in reducing power assay was determined by oven-dried pumpkin waste. An artificial neural network model was developed, for the anticipation of antioxidant activity according to bioact­ive compounds content (phenolics and carotenoids), in oven-dried (at 50 and 65 °C) and in freeze-dried pumpkin waste after one-year storage. These models showed good prediction properties (the r2 value during training cycle for output variables was 0.999). It was demonstrated that pumpkin waste is potentially an important source of bioactive compounds, which can be used after extraction in suitable forms in the development of functional food products.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stajčić, “Antioxidant activity according to bioactive compounds content in dried pumpkin waste: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 13–27, Feb. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

B. Kulczyński, A. Gramza-Michałowska, Molecules 24 (2019) 2945 (https://doi.org/10.3390/molecules24162945)

A. Hussain, T. Kausar, A. Din, A. Murtaza, M. A. Jamil, S. Noreen, H. Rehman, H. Shabbir, M. A. Ramzan, J. Food Process. Preserv. 45 (2021) e15542 (https://doi.org/10.1111/jfpp.15542)

F. Que, L. Mao, X. Fang, T. Wu, Int. J. Food Sci. Technol. 43 (2008) 1195 (https://doi.org/10.1111/j.1365-2621.2007.01590.x)

A. A. Shetty, R. Rana, T. Buckseth, S. P. Preetham, Waste and Biomass Valor. 3 (2012) 363 (https://doi.org/10.1007/s12649-012-9114-x)

A. Hussain, T. Kausar, S. Sehar, A. Sarwar, A. H. Ashraf, M. A. Jamil, S. Noreen, A. Rafique, K. Iftikhar, M. Y. Quddoos, J. Aslam, M. A. Majeed, Food Chem. Adv. 1 (2022) 100067 (https://doi.org/10.1016/j.focha.2022.100067)

A. Hussain, T. Kausar, S. Sehar, A. Sarwar, A. H. Ashraf, M. A. Jamil, S. Noreen, A. Rafique, K. Iftikhar, J. Aslam, M. Y. Quddoos, M. A. Majeed, M. Zerlasht, Appl. Food Res. 2 (2022) 100241 (https://doi.org/10.1016/j.afres.2022.100241)

R. Li, H. Shang, H. Wu, M. Wang, M. Duan, J. Yang, Sci Rep. 8 (2018) 9529 (https://doi.org/10.1038/s41598-018-27874-4)

A. Nawirska, A. Figiel, A. Z. Kucharska, A. Sokoł-Łętowska, A. Biesiada, J. Food Eng. 94 (2009) 14 (http://dx.doi.org/10.1016/j.jfoodeng.2009.02.025)

M. U. H. Suzihaque, S. A. Hashib, U. K. Ibrahim, Proc. Soc. Behav. Sci. 195 (2015) 2829 (https://doi.org/10.1016/j.sbspro.2015.06.401)

V. N. Šeregelj, G. S. Ćetković, J. M. Čanadanović-Brunet, V. T. Tumbas Šaponjac, J. J. Vulić, S. M. Stajčić, Acta Period. Technol. 48 (2017) 261 (https://doi.org/10.2298/APT1748261S)

Z. Fang, B. Bhandari, Trends Food Sci. Technol. 21 (2010) 510 (https://doi.org/10.1016/j.tifs.2010.08.003)

A. Hussain, T. Kausar, S. Sehar, A. Sarwar, M. Y. Quddoos, J. Aslam, A. Liaqat, T. Siddique, Q. U. An, S. Kauser, A. Rehman, R. Nisar, Food Prod. Process. Nutr. 5 (2023) 1 (https://doi.org/10.1186/s43014-023-00138-z)

V. Šeregelj, V. Tumbas Šaponjac, S. Lević, A. Kalušević, G. Ćetković, J. Čanadanović-Brunet, V. Nedović, S. Stajčić, J. Vulić, A. Vidaković, J. Microencapsul. 36 (2019) 704 (https://doi.org/10.1080/02652048.2019.1668488)

V. Phuon, I. N. Ramos, T. R. S. Brandão, C. L. M. Silva, J. Food Process Eng. 45 (2021) e13794 (https://doi.org/10.1111/jfpe.13794)

M. R. I. Shishir, F. S. Taip, N. A. Aziz, R. A. Talib, Agric. Sci. Proc. 2 (2014) 74 (https://doi.org/10.1016/j.aaspro.2014.11.011)

C. Yamashita, M. M. Song Chung, C. dos Santos, C. Malacrida, I. C. F. Moraes, I. Branco, LWT – Food Sci. Technol. 84 (2017) 256 (https://doi.org/10.1016/j.lwt.2017.05.063)

M. Nagata, I. Yamashita, J. Jpn. Soc. Food Sci. Technol. 39 (1992) 925 (https://doi.org/10.3136/nskkk1962.39.925)

V. L. Singleton, J. A. Rossi, Am. J. Enol. Vitic. 16 (1965) 144 (https://doi.org/10.5344/ajev.1965.16.3.144)

V. Tumbas Šaponjac, G. Ćetković, J. Čanadanović-Brunet, A. Mandić, V. Šeregelj, J. Vulić, S. Stajčić, J. Chem. 2019 (2019) 7184293 (https://doi.org/10.1155/2019/7184293)

A. Girones-Vilaplana, P. Mena, D. A. Moreno, C. Garcia-Viguera, J. Sci. Food Agric. 94 (2014) 1090 (https://doi.org/10.1002/jsfa.6370)

M. Oyaizu, Jpn. J. Nutr. Diet. 44 (1986) 307 (https://doi.org/10.5264/eiyogakuzashi.44.307)

T. Kollo, D. von Rosen, Advanced Multivariate Statistics with Matrices, Springer Dordrecht, 2005 (https://doi.org/10.1007/1-4020-3419-9)

C.I. Ochoa-Martínez, A.A. Ayala-Aponte, LWT – Food Sci. Technol. 40 (2007) 638 (https://doi.org/10.1016/j.lwt.2006.03.013)

M. Aćimović, L. Pezo, V. Tešević, I. Čabarkapa, M. Todosijević, Ind. Crops Prod. 154 (2020) 112752 (https://doi.org/10.1016/j.indcrop.2020.112752)

Y. Yoon, G. Swales, T. M. Margavio, J. Oper. Res. Soc. 44 (2017) 51 (https://doi.org/10.1057/jors.1993.6)

S. Roshanak, M. Rahimmalek, S. A. H. Goli, J. Food Sci. Technol. 53 (2016) 721 (https://doi.org/10.1007/s13197-015-2030-x)

N. M. Nawi, I. I. Muhamad, A. M. Marsin, Food Sci. Nutr. 3 (2015) 91 (https://doi.org/10.1002/fsn3.132)

S. J. Cynthia, J. D. Bosco, S. Bhol, Int. J. Food Prop. 18 (2015) 1793 (https://doi.org/10.1080/10942912.2014.940536)

K. Papoutsis, J. B. Golding, Q. Vuong, P. Pristijono, C. E. Stathopoulos, C. J. Scarlett, M. Bowyer, Foods. 7 (2018) 115 (https://doi.org/10.3390/foods7070115)

G. Caliskan, S. N. Dirim, Heat Mass Transf. 53 (2017) 2129 (https://doi.org/10.1007/s00231-017-1967-x)

E. Aydin, D. Gocmen, LWT – Food Sci. Technol. 60 (2015) 385 (http://dx.doi.org/10.1016/j.lwt.2014.08.025)

W. Roongruangsri, J. E. Bronlund, Int. Food Res. J. 23 (2016) 962 (http://www.ifrj.upm.edu.my/volume-23-2016.html)

R. V. Tonon, S. S. Freitas, M. D. Hubinger, J. Food Process. Preserv. 35 (2011) 691 (https://doi.org/10.1111/j.1745-4549.2011.00518.x)

A. Nafiunisa, N. Aryanti, D. H. Wardhani, A. C. Kumoro, J. Phys. Conf. Ser. 909 (2017) 012084 (https://doi.org/10.1088/1742-6596/909/1/012084)

A. R. Oliveira, A. E. C. Ribeiro, É. R. Oliveira, M. C. Garcia, M. S. Soares Júnior, M. Caliari, Food Sci. Technol. 40 (2019) 282 (https://doi.org/10.1590/fst.34818)

P. B. Pathare, U. L. Opara, F. A. J. Al-Said, Food Bioprocess Tech. 6 (2013) 36 (https://doi.org/10.1007/s11947-012-0867-9)

N. Bahloul, N. Boudhrioua, M. Kouhila, N. Kechaou, Int. J. Food Sci. Technol. 44 (2009) 2561 (https://doi.org/10.1111/j.1365-2621.2009.02084.x)

M. Henríquez, S. Almonacid, M. Lutz, R. Simpson, M. Valdenegro, CyTA – J Food. 11 (2013) 127 (http://dx.doi.org/10.1080/19476337.2012.703693)

D. Mohapatra, Z. M. Bira, J. P. Kerry, J. M. Frías, F. A. Rodrigues, J. Food Sci. 75 (2010) 146 (https://doi.org/10.1111/j.1750-3841.2010.01518.x)

S. N. Dirim, G. Çalışkan, Gida J. Food 37 (2012) 203 (https://dergipark.org.tr/en/pub/gida/issue/6933/92554)

A. Nawirska-Olszanska, B. Stępien, A. Biesiada, LWT – Food Sci. Technol. 77 (2017) 276 (https://doi.org/10.1016/j.lwt.2016.11.067)

D. C. Potosi-Calvache, P. Vanegas-Maheceha, H. A. Martinez-Correa, DYNA 84 (2017) 112 (http://dx.doi.org/10.15446/dyna.v84n202.63904)

Z. Erbay, F. Icier, J. Food Eng. 91 (2009) 533 (https://doi.org/10.1016/j.jfoodeng.2008.10.004)

T. Turanyi, A. S. Tomlin, Analysis of kinetics reaction mechanisms, Springer, Berlin, 2014 (https://doi.org/10.1007/978-3-662-44562-4)

M. Doumpos, C. Zopounidis, Eur. J. Oper. Res. 209 (2011) 203 (https://doi.org/10.1016/j.ejor.2010.05.029).

Most read articles by the same author(s)

1 2 > >>