Examination and optimization of lignocellulolytic activity of Stereum gausapatum F28 on beechwood sawdust supplemented with molasses stillage Scientific paper

Main Article Content

Jelena Jović
https://orcid.org/0000-0001-9020-7854
Jian Hao
https://orcid.org/0000-0002-4403-8188
Ljiljana Mojović
https://orcid.org/0000-0001-7529-4670

Abstract

This study provides a detailed analysis of the lignocellulolytic act­ivity of a new isolate Stereum gausapatum F28, a Serbian autochthonous fungi, on beechwood sawdust supplemented with cheap waste, sugar beet molasses still­age. Advanced multiple response optimization techniques were applied to imp­rove ligninolytic and reduce hydrolytic activity as a requirement for poten­tial biorefinery use. The applied techniques were supposed to select cultivation conditions that would give manganese peroxidase and laccase activities above 0.84 and 0.12 U g-1 substrate, respectively, and cellulase and xylanase activities below 1.12 and 1.4 U g-1 substrate. The optimal cultivation conditions that met the set requirements included molasses stillage concentration of 10 %, substrate moisture content of 53 %, incubation temperature of 23.5 °C, and pH 5.2. The research showed that the addition of molasses stillage had a positive effect on enzyme production and that the optimal stillage concentration differed depend­ing on the enzyme type (for laccase it was <5 %, manganese peroxidase ≈12 %, cellulase ≈21 % and xylanase ≈16 %), which should be taken into consider­ation when optimizing the desired process.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Jović, J. Hao, and L. Mojović, “Examination and optimization of lignocellulolytic activity of Stereum gausapatum F28 on beechwood sawdust supplemented with molasses stillage: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 437–450, Nov. 2021.
Section
Biochemistry & Biotechnology

References

S. Bharathiraja, J. Suriya, M. Krishnan, P. Manivasagan, S.-K. Kim, in Advances in Food and Nutrition Research, S.-K. Kim, F. Toldrá (Eds.), Academic Press, Cambridge, MA, 2017, pp. 125–148 (https://dx.doi.org/10.1016/bs.afnr.2016.11.003)

A. P. Singh, T. Singh, Biomass Bioenergy 62 (2014) 198 (https://dx.doi.org/10.1016/j.biombioe.2013.12.013)

O. B. Chukwuma, M. Rafatullah, H. A. Tajarudin, N. Ismail, Sustainability 12 (2020) 7282 (https://dx.doi.org/10.3390/su12187282)

W. Mikucka, M. Zielińska, Appl. Biochem. Biotechnol. 192 (2020) 770 (https://dx.doi.org/10.1007/s12010-020-03343-5)

J. Jović, J. Hao, S. Kocić-Tanackov, L. Mojović, Biomass Convers. Biorefinery (2020) (https://dx.doi.org/10.1007/s13399-020-00929-1)

Z. Shahryari, M. H. Fazaelipoor, Y. Ghasemi, P. R. Lennartsson, M. J. Taherzadeh, Molecules 24 (2019) 721 (https://dx.doi.org/10.3390/molecules24040721)

B. K. Acharya, S. Mohana, R. Jog, J. Divecha, D. Madamwar, J. Environ. Manage. 91 (2010) 2019 (https://dx.doi.org/10.1016/j.jenvman.2010.05.001)

V. Singh, S. Haque, R. Niwas, A. Srivastava, M. Pasupuleti, C. K. M. Tripathi, Front. Microbiol. 7 (2017) (https://dx.doi.org/10.3389/fmicb.2016.02087)

D. Palhazi Cuervo, P. Goos, K. Sörensen, Stat. Comput. 26 (2016) 15 (https://dx.doi.org/10.1007/s11222-014-9467-z)

R. Noorossana, S. Davanloo Tajbakhsh, A. Saghaei, Int. J. Adv. Manuf. Technol. 40 (2009) 1227 (https://dx.doi.org/10.1007/s00170-008-1423-7)

J. Jović, A. Buntić, N. Radovanović, B. Petrović, L. Mojović, Food Technol. Biotechnol. 56 (2018) 354 (https://dx.doi.org/10.17113/ftb.56.03.18.5348)

A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, J. Wolfe, Biomass and Total Dissolved Solids in Liquid Process Samples, Technical Report, National Renewable Energy Laboratory, Golden, CO, 2008, p. 9 (https://www.nrel.gov/docs/gen/fy08/42621.pdf)

R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2020 (https://www.R-project.org)

R. V. Lenth, J. Stat. Softw. 32 (2009) 1 (http://dx.doi.org/10.18637/jss.v032.i07)

M. Kuhn, Desirability: function optimization and ranking via desirability functions, R package version 2.1, 2016 (https://CRAN.R-project.org/package=desirability)

L. Scrucca, J. Stat. Softw. 53 (2013) 1 (http://dx.doi.org/10.18637/jss.v053.i04)

L. Boddy, D. W. Bardsley, O. M. Gibbon, New Phytol. 107 (1987) 143 (https://dx.doi.org/https://doi.org/10.1111/j.1469-8137.1987.tb04888.x)

E. Krumova, N. Kostadinova, J. Miteva‐Staleva, G. Stoyancheva, B. Spassova, R. Abrashev, M. Angelova, Eng. Life Sci. 18 (2018) 692 (https://dx.doi.org/https://doi.org/10.1002/elsc.201800055)

J. A. Herrick, Ohio J. Sci. 39 (1939) 254 (https://kb.osu.edu/handle/1811/3038)

C. J. Humphrey, P. V. Siggers, J. Agric. Res. 47 (1933) 997 (https://naldc.nal.usda.gov/download/IND43968250/PDF)

G. C. dos Santos Bazanella, D. F. de Souza, R. Castoldi, R. F. Oliveira, A. Bracht, R. M. Peralta, Folia Microbiol. (Praha) 58 (2013) 641 (https://dx.doi.org/10.1007/s12223-013-0253-7)

P. A. Geethanjali, H. G. Gowtham, M. Jayashankar, Bull. Natl. Res. Cent. 44 (2020) 173 (https://dx.doi.org/10.1186/s42269-020-00426-5)

A. Kumar, Int. J. Microbiol. 2020 (2020) e8894215 (https://dx.doi.org/https://doi.org/10.1155/2020/8894215)

L. M. Legodi, D. La Grange, E. L. J. van Rensburg, I. Ncube, Enzyme Res. 2019 (2019) e1390890 (https://dx.doi.org/https://doi.org/10.1155/2019/1390890)

M. Galbe, O. Wallberg, Biotechnol. Biofuels 12 (2019) 294 (https://dx.doi.org/10.1186/s13068-019-1634-1)

R. Reina, H. Kellner, J. Hess, N. Jehmlich, I. García-Romera, E. Aranda, M. Hofrichter, C. Liers, PLOS ONE 14 (2019) e0212769 (https://dx.doi.org/10.1371/journal.pone.0212769)

A. Tripathi, R. C. Upadhyay, S. Singh, Indian J. Microbiol. 52 (2012) 381 (https://dx.doi.org/10.1007/s12088-011-0232-0)

I. Eichlerová, P. Baldrian, J. Fungi 6 (2020) 301 (https://dx.doi.org/10.3390/jof6040301)

N. Namnuch, A. Thammasittirong, S. N.-R. Thammasittirong, Mycology 12 (2021) 119 (https://dx.doi.org/10.1080/21501203.2020.1806938).