LabVIEW virtual instrument for zone penetration studies in flow-based analytical systems Scientific paper

Main Article Content

Aleksandra Kuljanin
Nataša Gros


In the flow method development, zone penetration studies are usually conducted as a part of the initial screening phase. A lack of an appropriate tool can keep these studies on the level of rough estimations. The developed LabVIEW virtual instrument (VI) which processes peak signals and calculates the overlapping area and fundamental peak-related parameters was used for the calculations in experiments that are modelling sample and reagent plug inter­action within liquid conduits. The reliability of the predictions was initially confirmed on the artificial data set based on thirty-six files covering all the different types of cases that can be foreseen. To continue, the volumes of model solutions, propelling flow rate, and the coil length in the sequential injection analysis system, were varied by following the Box–Behnken response surface design. In three examples, it is demonstrated how the VI can help the planning of further experiments in the range which ensures the efficient zone overlap­ping, the economic exploitation of reagent plug and the adequate dis­persion. The application of the VI is not limited just to the flow-based chem­istry, it can also be used in spectroscopy and chromatography. In order to use the graphical user interface, it is not necessary to have the LabVIEW program installed.

Article Details

How to Cite
A. Kuljanin and N. Gros, “LabVIEW virtual instrument for zone penetration studies in flow-based analytical systems: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1089-1102, Nov. 2021.
Analytical Chemistry


P. K. Dasgupta, Y. Chen, C.A. Serrano, G. Guiochon, H. Liu, J.N. Fairchild, R.A. Shalliker, Anal. Chem. 82 (2010) 10143 (

I. A. Haidar Ahmad, A. Blasko, J. Tam, N. Variankaval, H. M. Halsey, R. Hartman, E. L. Regalado, J. Chromatogr., A 1603 (2019) 1 (

M. F. Wahab, A. Berthod, D. W. Armstrong, J. Sep. Sci. 42 (2019) 3604 (

H. Kong, F. Ye, X. Lu, L. Guo, J. Tian, G. Xu, J. Chromatogr., A 1086 (2005) 160 (

M. J. Rodríguez-Cuesta, R. Boqué, F. X. Rius, J. L. Martínez Vidal, A. Garrido Frenich, Chemometr. Intell. Lab. Systems 77 (2005) 251 (

Y. Hu, J. Liu, W. Li, Anal. Chim. Acta 538 (2005) 383 (

M. Perez-Baeza, L. Escuder-Gilabert, M. J. Medina-Hernandez, J. J. Baeza-Baeza, M. C. Garcia-Alvarez-Coque, J. Chromatogr., A 1625 (2020) 461273 (

M. Karakaplan, F. M. Avcu, J. Chemom. 34 (2020) 3229 (

V. Cerdà, L. Ferrer, J. Avivar, A. Cerdà, Evolution and Description of the Principal Flow Techniques In Flow Analysis, Elsevier, Boston, MA, 2014, pp. 1–42 (

J. Ruzicka, E. H. Hansen, Flow injection analysis, John Wiley and Сons, New York, 1988, pp. 365–371 (ISBN: 978-0-471-81355-2)

T. Gubeli, G. D. Christian, J. Ruzicka, Anal. Chem. 63 (1991) 2407 (

R. E. Taljaard, J. F. van Staden, Lab. Rob. Autom. 10 (1998) 325 (<325::AID-LRA3>3.0.CO;2-L)

J. F. van Staden, T. McCormack, Instrum. Sci. Technol. 27 (1999) 167 (

J. Jakmunee, T. Rujiralai, K. Grudpan, Anal. Sci. 22 (2006) 157 (

C. X. Galhardo, J. C. Masini, Anal. Chim. Acta 417 (2000) 191 (

W. Khongpet, S. Pencharee, C. Puangpila, S. Kradtap Hartwell, S. Lapanantnoppakhun, J. Jakmunee, Talanta 177 (2018) 77 (

A. R. Araujo, M. L. Saraiva, J. L. Lima, Talanta 74 (2008) 1511 (

L. D. Chen, J. Xu, T. Wang, Y. M. Huang, D. X. Yuan, Z. B. Gong, Talanta 232 (2021) 122404 (

S. Liawruangrath, K. Prasertboonyai, Anal. Lett. 54 (2021) 364 (

T. J. Trinklein, M. Thapa, L. A. Lanphere, J. A. Frost, S. M. Koresch, J. H. Aldstadt, Talanta 231 (2021) 122355 (

OriginLab, (accessed 31. 5. 2021)

J. Walkenbach, Excel® 2010 Power Programming with VBA, Wiley Publishing, Indianapolis, IN, 2010, pp. 1–10 (ISBN: 978-0-470-47535-5)

T. Mikhailova, S. M. Mustafina, V. Mikhailov, S. Mustafina, Entomol. Appl. Sci. Lett. 5 (2018) 21 (

L. Liu, J. Li, L. Deng, Adv. Mat. Res. 569 (2012) 808 (

National Instruments, (accessed 31.5.2021)

R. A. Viscarra Rossel, Chemom. Intell. Lab. Systems 90 (2008) 72 (

W.B. Wang, J. Li, Q. J. Wu, J. Automat. Chem. 2007 (2007) 68143 (

M. R. Liu, Y. Liu, Y, L. M. Zhou, Micromachines 12 (2021) 602 (

J. Ma, P. Li, Z. Chen, K. Lin, N. Chen, Y. Jiang, J. Chen, B. Huang, D. Yuan, Anal. Chem. 90 (2018) 6431 (

C. Lenehan, N. Barnett, S. Lewis, J. Autom. Chem. 24 (2002) 99 (10.1080/14639240210136747)

Y. Deng, P. C. Li, T. Y. Fang, Y. Y. Jiang, J. X. Chen, N. W. Chen, D. X. Yuan, J. Ma, Anal. Chem. 92 (2020) 4379 (10.1021/acs.analchem.9b05252 )

X. L. Ronghui Zhou, Q. Yang, P. Wu, Chin. Chem. Lett. 30 (2019) 1843 (

A. Bavali, P. Parvin, M. Tavassoli, M. R. Mohebbifar, Appl. Opt. 57 (2018) B32 (

N. Gros, B. Gorenc, J. Chromatogr., A 697 (1995) 31 (

National Instruments LabVIEW, (accessed 31. 5. 2021).