Application aspects of joint anaphoresis/substrate anodization in production of biocompatible ceramic coatings Survey

Main Article Content

Katarina Đ. Božić
https://orcid.org/0000-0002-6712-0221
Miroslav M. Pavlović
https://orcid.org/0000-0003-3754-4143
Gavrilo M. Šekularac
https://orcid.org/0000-0002-6370-4983
Stefan Panić
https://orcid.org/0000-0003-1384-6219
Marijana R. Pantović Pavlović
https://orcid.org/0000-0002-9507-3469

Abstract

Electrophoretic deposition (EPD) can occur as a cataphoretic depo­sition – the coating is deposited on the cathode, and anaphoretic deposition – the coating is deposited on the anode. The primary purpose of EPD is to obtain compact and uniform organic/inorganic coatings of the desired thickness and adhesion on metal surfaces by applying an electric field to the particles of coat­ing precursor. EPD basic principles for coatings deposition concerning fund­am­ental explanations and considerations of practical parameters of the process are presented. Cataphoretic deposition has become popular because it can apply organic coatings to complex structures that are otherwise very difficult to coat. These coatings were found to improve the characteristics of the substrate, such as biocompatibility, appearance and resistance to the corrosion processes. The key EPD parameters are composition, pH value and viscosity of deposition medium, as well as zeta potential of the particles, electric field strength, etc. A special survey is given to the process of anaphoretic deposition, which is relat­ively new, and its advantages over cataphoretic deposition are discussed. Through the process of joint anaphoresis/substrate anodization process, the sur­face of the substrate is simultaneously anodized and modified by incorporation of the foreign particles into the anodic layer. The coatings of mixed compo­sition of better adhesion and corrosion resistance with respect to cataphoretic­ally-deposited coatings are obtained as result.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
K. Božić, M. M. Pavlović, G. Šekularac, S. Panić, and M. Pantović Pavlović, “Application aspects of joint anaphoresis/substrate anodization in production of biocompatible ceramic coatings: Survey”, J. Serb. Chem. Soc., vol. 88, no. 7-8, pp. 685–704, Aug. 2023.
Section
Materials

Funding data

References

G. Choi, A. H. Choi, L. A. Evans, S. Akyol, B. Ben-Nissan, J. Am. Ceram. Soc. 103 (2020) 5442 (https://doi.org/10.1111/jace.17118)

J. Peña, I. Izquierdo-Barba, M. A. García, M. Vallet-Regí, J. Eur. Ceram. Soc. 26 (2006) 3631 (https://doi.org/10.1016/j.jeurceramsoc.2005.12.028)

B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, J. H. Choi, H. E. Kim, S. G. Kim, Surf. Coatings Technol. 205 (2011) 3112 (https://doi.org/10.1016/j.surfcoat.2010.11.029)

I. Ullah, M. A. Siddiqui, H. Liu, S. K. Kolawole, J. Zhang, S. Zhang, L. Ren, K. Yang, ACS Biomater. Sci. Eng. 6 (2020) 1355 (https://doi.org/10.1021/acsbiomaterials.9b01396)

W. Yuan, J. Ji, J. Fu, J. Shen, J. Biomed. Mater. Res., B 85 (2008) 556 (https://doi.org/10.1002/jbm.b.30979)

N. Meyer, L. R. Rivera, T. Ellis, J. Qi, M. P. Ryan, A. R. Boccaccini, Coatings 8 (2018) 27 (https://doi.org/10.3390/coatings8010027)

L. Besra, M. Liu, Prog. Mater. Sci. 52 (2007) 1 (https://doi.org/10.1016/j.pmatsci.2006.07.001)

S. A. Batool, A. Wadood, S. W. Hussain, M. Yasir, M. A. Ur Rehman, Surfaces 4 (2021) 205 (https://doi.org/10.3390/surfaces4030018)

S. H. Lee, S. P. Woo, N. Kakati, D. J. Kim, Y. S. Yoon, Energies 11 (2018) 3122 (https://doi.org/10.3390/en11113122)

L. Kremser, D. Blaas, E. Kenndler, Electrophoresis 25 (2004) 2282 (https://doi.org/10.1002/elps.200305868)

A. Laska, M. Bartmański, Inżynieria Mater. 1 (2020) 20 (https://doi.org/10.15199/28.2020.1.3)

N. Sato, M. Kawachi, K. Noto, N. Yoshimoto, M. Yoshizawa, Phys., C 357–360 (2001) 1019 (https://doi.org/10.1016/S0921-4534(01)00510-X)

S. Cabanas-Polo, A. R. Boccaccini, J. Eur. Ceram. Soc. 36 (2016) 265 (https://doi.org/10.1016/j.jeurceramsoc.2015.05.030)

A. A. Sadeghi, T. Ebadzadeh, B. Raissi, S. Ghashghaie, Ceram. Int. 39 (2013) 7433 (https://doi.org/10.1016/j.ceramint.2013.02.087)

B. Ouedraogo, J. Sci. Res. Reports 2 (2013) 190 (https://doi.org/10.9734/jsrr/2013/2559)

B. Ferrari, R. Moreno, Mater. Lett. 28 (1996) 353 (https://doi.org/10.1016/0167-577X(96)00075-4)

B. Ferrari, R. Moreno, J. Eur. Ceram. Soc. 30 (2010) 1069 (https://doi.org/10.1016/j.jeurceramsoc.2009.08.022)

I. Aznam, J. C. W. Mah, A. Muchtar, M. R. Somalu, M. J. Ghazali, J. Zhejiang Univ. Sci. A 19 (2018) 811 (https://doi.org/10.1631/jzus.A1700604)

M. Předota, M. L. Machesky, D. J. Wesolowski, Langmuir 32 (2016) 10189 (https://doi.org/10.1021/acs.langmuir.6b02493)

S. Kamble, S. Agrawal, S. Cherumukkil, V. Sharma, R. V. Jasra, P. Munshi, ChemistrySelect 7 (2022) e202103084 (https://doi.org/10.1002/slct.202103084)

A. A. Abdeltawab, M. A. Shoeib, S. G. Mohamed, Surf. Coatings Technol. 206 (2011) 43 (https://doi.org/10.1016/j.surfcoat.2011.06.034)

I. Zhitomirsky, J. Eur. Ceram. Soc. 18 (1998) 849 (https://doi.org/10.1016/S0955-2219(97)00213-6)

R. N. Basu, C. A. Randall, M. J. Mayo, J. Am. Ceram. Soc. 84 (2001) 33 (https://doi.org/10.1111/j.1151-2916.2001.tb00604.x)

A. Rousta, D. Dorranian, Trans. Inst. Met. Finish. 99 (2021) 172 (https://doi.org/10.1080/00202967.2021.1914382)

P. Zhao, L. J. LeSergent, J. Farnese, J. Z. Wen, C. L. Ren, Electrochem. Commun. 108 (2019) 106558 (https://doi.org/10.1016/j.elecom.2019.106558)

A. M. A. Abudalazez, S. R. Kasim, A. B. Ariffin, Z. A. Ahmad, Int. J. Eng. Res. Africa 8 (2012) 47 (https://doi.org/10.4028/www.scientific.net/JERA.8.47)

H. C. Hamaker, Trans. Faraday Soc. 35 (1940) 279 (https://doi.org/10.1039/TF9403500279)

R. Moreno, B. Ferrari, in: Electrophor. Depos. Nanomater., J.H. Dickerson, A.R. Boccaccini, Eds., Springer. New York, 2012, p. 73 (https://doi.org/10.1007/978-1-4419-9730-2_2)

A. I. Avgustinik, V. S. Vigdergauz, G. I. Zhuravlev, J. Appl. Chem. USSR (Engl. Transl.) 35 (1962) 2090 (https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201602000824298251)

P. M. Biesheuvel, H. Verweij, J. Am. Ceram. Soc. 82 (1999) 1451 (https://doi.org/10.1111/j.1151-2916.1999.tb01939.x)

P. Sarkar, P. S. Nicholson, J. Am. Ceram. Soc. 79 (1996) 1987 (https://doi.org/10.1111/j.1151-2916.1996.tb08929.x)

G. J. Kynch, Trans. Faraday Soc. 48 (1952) 166 (https://doi.org/10.1039/tf9524800166)

G. Anné, K. Vanmeensel, J. Vleugels, O. Van Der Biest, J. Am. Ceram. Soc. 88 (2005) 2036 (https://doi.org/10.1111/j.1551-2916.2005.00387.x)

V. Ozhukil Kollath, Q. Chen, R. Closset, J. Luyten, K. Traina, S. Mullens, A. R. Boccaccini, R. Cloots, J. Eur. Ceram. Soc. 33 (2013) 2715 (https://doi.org/10.1016/j.jeurceramsoc.2013.04.030)

A. Braem, K. De Brucker, N. Delattin, M. S. Killian, M. B. J. Roeffaers, T. Yoshioka, S. Hayakawa, P. Schmuki, B. P. A. Cammue, S. Virtanen, K. Thevissen, B. Neirinck, ACS Appl. Mater. Interfaces 9 (2017) 8533 (https://doi.org/10.1021/acsami.6b16433)

E. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer, Elsevier, New York, 1948 (http://www.damtp.cam.ac.uk/user/gold/pdfs/teaching/BPFD/Chap2_10_VerweyOverbeek.pdf)

B. Derjaguin, L. Landau, Prog. Surf. Sci. 43 (1993) 30 (https://doi.org/10.1016/0079-6816(93)90013-L)

J. H. Adair, E. Suvaci, J. Sindel, in: Encycl. Mater. Sci. Technol., K.H. Jürgen Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière, Eds., Elsevier, Amsterdam, 2001, p. 8996 (https://doi.org/10.1111/j.2042-7158.1951.tb13130.x)

S. Eraković, A. Janković, D. Veljović, E. Palcevskis, M. Mitrić, T. Stevanović, D. Janaćković, V. Miskovic-Stankovic, J. Phys. Chem., B 117 (2013) 1633 (https://doi.org/10.1021/jp305252a)

S. Erakovic, A. Jankovic, G. C. P. Tsui, C. Y. Tang, V. Miskovic-Stankovic, T. Stevanovic, Int. J. Mol. Sci. 15 (2014) 12294 (https://doi.org/10.3390/ijms150712294)

J. Li, P. Zhou, S. Attarilar, H. Shi, Coatings 11 (2021) 647 (https://doi.org/10.3390/coatings11060647)

C. Yao, T. J. Webster, J. Nanosci. Nanotechnol. 6 (2006) 2682 (https://doi.org/10.1166/jnn.2006.447)

Y. Parcharoen, P. Termsuksawad, S. Sirivisoot, J. Nanomater. 2016 (2016) 9143969 (https://doi.org/10.1155/2016/9143969)

M. R. Pantović Pavlović, M. M. Pavlović, S. Eraković, T. Barudžija, J. S. Stevanović, N. Ignjatović, V. V. Panić, J. Serb. Chem. Soc. 84 (2019) 1305 (https://doi.org/10.2298/JSC190730105P)

M. R. Pantović Pavlović, S. G. Eraković, M. M. Pavlović, J. S. Stevanović, V. V Panić, N. L. Ignjatović, Surf. Coatings Technol. 358 (2019) 688 (https://doi.org/10.1016/j.surfcoat.2018.12.003)

M. R. Pantović Pavlović, M. M. Pavlović, S. Eraković, J. S. Stevanović, V. V. Panić, N. Ignjatović, Mater. Lett. 261 (2020) 127121 (https://doi.org/10.1016/j.matlet.2019.127121)

M. R. Pantović Pavlović, B. P. Stanojević, M. M. Pavlović, M. D. Mihailović, J. S. Stevanović, V. V. Panić, N. L. Ignjatović, ACS Biomater. Sci. Eng. 7 (2021) 3088 (https://doi.org/10.1021/acsbiomaterials.1c00035)

M. R. Pantović Pavlović, M. M. Pavlović, J. N. Kovačina, B. P. Stanojević, J. S. Stevanović, V. V. Panić, N. L. Ignjatović, J. Ser. Chem. Soc. 86 (2021) 555 (https://doi.org/10.2298/JSC210211024P)

M. R. Pantović Pavlović, PhD Thesis, University of Belgrade, 2021 in Serbian (https://147.91.1.130/handle/123456789/4424)

M. R. Pantović Pavlović, N. L. Ignjatović, V. V Panić, I. I. Mirkov, J. B. Kulaš, A. L. Malešević, M. M. Pavlović, J. Funct. Biomater. 14 (2023) 227 (https://doi.org/10.3390/jfb14040227).

Most read articles by the same author(s)