Terpenoids in four Inula species from Bulgaria Scientific paper

Main Article Content

Antoaneta Trendafilova
https://orcid.org/0000-0001-5273-176X
Victoria Ivanova
Milka Todorova
Plamena Staleva
Ina Aneva
https://orcid.org/0000-0002-6476-5438

Abstract

Phytochemical study of the chloroform extract of the aerial parts of Inula germanica L., I. ensifolia L., I. conyza (Griess.) DC. and I. salicina L. led to the identification of 33 terpenoids. β- and α-amyrin, lupeol, taraxasterol, ψ-tar­axasterol and their 3-O-acetates and 3-O-palmitates were identified by GC/MS. In addition, the structures of 3-O-palmitates of mainaladiol, arnidiol, faradiol and 16-hydroxylupeol were confirmed by NMR. ent-Kaur-16-en-19-oic acid and its 15α-(3-methylpentanoyloxy) and 15α-(3-methylbutanoyloxy) deriva­tives were isolated from I. conyza. Ten closely related sesquiterpene lac­tones (germacrano­lides and melampolides) were found in I. germanica and their struc­tural iden­tification was performed by spectral analyses. I. ensifolia and I. salicina were free of sesquiterpene lactones and diterpenoids. All tri­ter­penoids and diterpenoids, grazielia acid, desacetylovatifolin and 8-(2-methyl­butan­oyloxy)-1(10),4,11(13)-germacrutrien-6,12-olide-14-oic acid are des­cribed for the first time in the studied species. The principal component ana­lysis was used to find a relationship between thе investigated up to now Inula species, growing in Bulgaria.

Article Details

How to Cite
[1]
A. Trendafilova, V. Ivanova, M. Todorova, P. Staleva, and I. Aneva, “Terpenoids in four Inula species from Bulgaria: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 12, pp. 1229–1240, Dec. 2021.
Section
Theme issue honoring Professor Emeritus Slobodan Milosavljevićs 80th birthday

References

G. Beck, “Inulae Europae”: Die Europäischen Inula-Arten, Dankschr. Königl. Akad. Wiss. Mat.-Nat., Nabu Press, Charleston, SC, 2011

A. A. Anderberg, Plant Syst. Evol. 176 (1991) 75 (https://dx.doi.org/10.1007/BF00937947)

A. M. L. Seca, A. Grigore, D. C. G. A. Pinto, A. M. S. Silva, J. Ethnopharmacol. 154 (2014) 286 (https://dx.doi.org/10.1016/j.jep.2014.04.010)

A. M. L. Seca, D. C. G. A. Pinto, A. M. S. Silva, Chem. Biodivers. 12 (2015) 859 (https://dx.doi.org/10.1002/cbdv.201400080)

Y.-M. Zhao, M.-L. Zhang, Q.-W. Shi, H. Kiyota, Chem. Biodivers. 3 (2006) 371 (https://dx.doi.org/10.1002/CBDV.200690041)

A. L. Khan, J. Hussain, M. Hamayun, S. A. Gilani, S. Ahmad, G. Rehman, Y. H. Kim, S. M. Kang, I. J. Lee, Molecules 15 (2010) 1562 (https://dx.doi.org/10.3390/molecules15031562)

F. C. Seaman, Bot. Rev. 1982 482 48 (1982) 121 (https://dx.doi.org/10.1007/BF02919190)

A. Trendafilova, V. Ivanova, M. Todorova, I. Aneva, Phytochem. Lett. 21 (2017) 221 (https://dx.doi.org/10.1016/J.PHYTOL.2017.07.008)

A. Trendafilova, M. Todorova, I. Aneva, Comptes Rendus Acad. Bulg. Des. Sci. 71 (2018) 341 (https://dx.doi.org/10.7546/CRABS.2018.03.05)

V. Ivanova, A. Trendafilova, M. Todorova, K. Danova, D. Dimitrov, Nat. Prod. Commun. 12 (2017) 153 (https://dx.doi.org/10.1177/1934578x1701200201).

A. Trendafilova, M. Todorova, V. Genova, P. Shestakova, D. Dimitrov, M. Jadranin, S. Milosavljevic, Nat. Prod. Commun. 9 (2014) 1123 (https://dx.doi.org/10.1177/1934578x1400900814)

V. Ivanova, M. Todorova, I. Aneva, P. Nedialkov, A. Trendafilova, Biochem. Syst. Ecol. 93 (2020) 104141 (https://dx.doi.org/10.1016/J.BSE.2020.104141)

H. Budzikiewicz, J. M. Wilson, C. Djerassi, J. Am. Chem. Soc. 85 (1963) 3688 (https://dx.doi.org/10.1021/ja00905a036)

T. Kundakovic, N. Fokialakis, P. Magiatis, N. Kovacevic, I. Chinou, Chem. Pharm. Bull. 52 (2004) 1462 (https://dx.doi.org/10.1248/cpb.52.1462)

C. Y. Ragassa, F. Tiu, J. A. Rideoout, ACGC Chem. Res. Comm. 18 (2005) 11

S. Öksüz, G. Topçu, Phytochemistry 31 (1992) 195 (https://dx.doi.org/10.1016/0031-9422(91)83034-I)

T. Kikuchi, A. Tanaka, M. Uriuda, T. Yamada, R. Tanaka, Molecules 21 (2016) 1121 (https://dx.doi.org/10.3390/molecules21091121)

A. Trendafilova, M. Todorova, N. Kutova, M. Guncheva, Nat. Prod. Commun. 13 (2018) 1017–1020 (https://dx.doi.org/10.1177/1934578X1801300823)

C. Nicolaus, S. Junghanns, R. Murillo, I. Merfort, Planta Med. 80 (2014) P2B63 (https://dx.doi.org/10.1055/S-0034-1394940)

N. Ohno, T. J. Mabry, V. Zabelt, W. H. Watson, Phytochemistry 18 (1979) 1687 (https://dx.doi.org/10.1016/0031-9422(79)80184-3)

M. Velikova, V. Bankova, I. Tsvetkova, A. Kujumgiev, M. C. Marcucci, Fitoterapia 71 (2000) 693 (https://dx.doi.org/10.1016/S0367-326X(00)00213-6)

L. Ding, K. Wang, H. Wang, W. Tu, Z. Deng, Y. Zhou, L. Song, J. Chinese Med. Mater. 39 (2016) 1296

J. J. Qin, J. X. Zhu, W. D. Zhang, Y. Zhu, J. J. Fu, X. H. Liu, H. Z. Jin, Arch. Pharm. Res. 32 (2009) 1369 (https://dx.doi.org/10.1007/s12272-009-2004-5)

Z. P. Yu, J. H. Yu, J. S. Zhang, S. J. Yu, H. Zhang, Tetrahedron 75 (2019) 130732 (https://dx.doi.org/10.1016/j.tet.2019.130732)

F. Bohlmann, C. Zdero, R. M. King, H. Robinson, Phytochemistry 20 (1981) 1069 (https://dx.doi.org/10.1016/0031-9422(81)83029-4)

A. Kijjoa, M. M. S. M. Bastos, T. E. Gedris, W. Herz, Phytochemistry 32 (1993) 383 (https://dx.doi.org/10.1016/S0031-9422(00)94999-9)

M. Hoeneisen, M. Sicva, F. Bohlmann, Phytochemistry 19 (1980) 2765 (https://dx.doi.org/10.1016/S0031-9422(00)83964-3)

C. L. Cespedes, M. Hoeneisen, M. Bittner, J. Becerra, M. Silva, J. Agric. Food Chem. 49 (2001) 4243 (https://dx.doi.org/10.1021/jf010351c)

O. A. Konovalova, K. S. Rybalko, V. I. Sheichenko, Chem. Nat. Compd. 1976 105 10 (1974) 591 (https://dx.doi.org/10.1007/BF00567848)

K. Schorr, I. Merfort, F. B. Da Costa, Nat. Prod. Commun. 2 (2019) 367 (https://dx.doi.org/10.1177/1934578X0700200404)

F. Bohlmann, R. N. Baruah, J. Jakupovic, Planta Med. 51 (1985) 261 (https://dx.doi. org/10.1055/S-2007-969474)

F. Bohlmann, P. K. Mahanta, J. Jakupovic, R. C. Rastogi, A. A. Natu, Phytochemistry 17 (1978) 1165 (https://dx.doi.org/10.1016/S0031-9422(00)94308-5).