Microextraction of lanthanum using a rotating microchannel extractor Scientific paper

Main Article Content

Sanxing Li
https://orcid.org/0000-0003-3615-9542
Gaoxiang Chen
Chunxin Fan
JianHong Luo
https://orcid.org/0000-0003-3615-9542

Abstract

This work introduced a novel microchannel extractor. The extraction system was intended to extract lanthanum nitrate aqueous solution with 2-ethyl­hexyl phosphoric acid-2-ethylhexyl ester (EHEHPA). Different feeding methods and inner rotors were explored first. The results showed that parallel feeding and inner rotors engraved with spiral stripes were more favorable for extract­ion. Next, the effect of various factors on the extraction was explored, inc­lud­ing the aqueous phase pH, rotational inner rotor speed (R) and the fluid volu­metric flow rate (Q). The results showed that these factors are closely related to the extraction. Finally, the experiment was verified by CFD numerical simul­ation, the simulation result was consistent with the experiment. In this device, active mixing was introduced into the microchannel extraction, which signific­antly improved the extraction efficiency. Under certain conditions, the extract­ion efficiency of this device exceeded stirring extraction equilibrium. More­over, the extraction in the device is faster than with conventional stirring ext­ract­ion. These advantages provide a possibility for highly efficient extraction of rare earth elements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Li, G. Chen, C. Fan, and J. Luo, “Microextraction of lanthanum using a rotating microchannel extractor: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 505–518, Feb. 2022.
Section
Chemical Engineering

Funding data

References

R. K. Jyothi, T. Thenepalli, J. W. Ahn, P. K. Parhi, K. W. Chung, J. Y. Lee, J. Clean Prod. 267 (2020) 122048 (http://dx.doi.org/10.1016/j.jclepro.2020.122048)

A. Soukeur, A. Szymczyk, Y. Berbar, M. Amara, Sep. Purif. Technol. 256 (2021) 117857 (http://dx.doi.org/10.1016/j.seppur.2020.117857)

V. V. Belova, M. M. Martynova, Y. V. Tsareva, V. E. Baulin, D. V. Baulin, J. Mol. Liq. 293 (2019) 111568 (http://dx.doi.org/10.1016/j.molliq.2019.111568)

R. Panda, M. K. Jha, J. Hait, G. Kumar, R. J. Singh, K. Yoo, Hydrometallurgy 165 (2016) 106 (http://dx.doi.org/10.1016/j.hydromet.2015.10.019)

W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Hydrometallurgy 171 (2017) 27 (http://dx.doi.org/10.1016/j.hydromet.2017.04.007)

C. Shi, D. Duan, Y. Jia, Y. Jing, J. Mol. Liq. 200 (2014) 191 (http://dx.doi.org/10.1016/j.molliq.2014.10.004)

R. Ma, C. Fan, Y. Wang, J. Luo, J. Li, Y. Ji, Chem. Eng. Process. 151 (2020) 107916 (http://dx.doi.org/10.1016/j.cep.2020.107916)

F. Xie, T. A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 56 (2014) 10 (http://dx.doi.org/10.1016/j.mineng.2013.10.021)

P. A. Quadros, C. M. S. G. Baptista, Chem. Eng. Sci. 58 (2003) 3935 (http://dx.doi.org/10.1016/S0009-2509(03)00302-6)

A. M. Dehkordi, Ind. Eng. Chem. Res. 40 (2001) 681 (http://dx.doi.org/10.1021/ie000279s)

R. P. Verma, M. M. Sharma, Chem. Eng. Sci. 30 (1975) 279 (http://dx.doi.org/10.1016/0009-2509(75)80078-9)

M. N. Kashid, I. Gerlach, S. Goetz, J. Franzke, J. F. Acker, F. Platte, D. W. Agar, S. Turek, Ind. Eng. Chem. Res. 44 (2005) 5003 (http://dx.doi.org/10.1021/ie0490536)

Y. He, K. Chen, C. Srinivasakannan, S. Li, S. Yin, J. Peng, Chem. Eng. J. 354 (2018) 1068 (http://dx.doi.org/10.1016/j.cej.2018.07.193)

K. Wang, G. Luo, Chem. Eng. Sci. 169 (2017) 18 (http://dx.doi.org/10.1016/j.ces.2016.10.025)

G. Orsi, M. Roudgar, E. Brunazzi, C. Galletti, R. Mauri, Chem. Eng. Sci. 95 (2013) 174 (http://dx.doi.org/10.1016/j.ces.2013.03.015)

D. N. Ambare, S. A. Ansari, M. Anitha, P. Kandwal, D. K. Singh, H. Singh, P. K. Mohapatra, J. Membr. Sci. 446 (2013) 106 (http://dx.doi.org/10.1016/j.memsci.2013.06.034)

M. Nakase, R. Makabe, K. Takeshita, J. Nucl. Sci. Technol. 50 (2013) 287 (http://dx.doi.org/10.1080/00223131.2013.772445)

M. Nakase, H. Kinuhata, K. Takeshita, J. Nucl. Sci. Technol. 50 (2013) 1089 (http://dx.doi.org/10.1080/00223131.2013.835248)

C. Xu, T. Xie, Ind. Eng. Chem. Res. 56 (2017) 7593 (http://dx.doi.org/10.1021/acs.iecr.7b01712)

P. Erfle, J. Riewe, H. Bunjes, A. Dietzel, Micromachines 10 (2019) 220 (http://dx.doi.org/10.3390/mi10040220)

Q. Li, P. Angeli, Chem. Eng. Sci. 143 (2016) 276 (http://dx.doi.org/10.1016/j.ces.2016.01.004)

S. Yin, J. Pei, J. Peng, L. Zhang, C. Srinivasakannan, Hydrometallurgy 175 (2018) 64 (http://dx.doi.org/10.1016/j.hydromet.2017.10.027)

J. Chang, F. Jia, C. Srinivasakannan, K. A. Mumford, X. Yang, Chem. Eng. Process. 137 (2019) 54 (http://dx.doi.org/10.1016/j.cep.2019.02.001)

S. Dai, J. Luo, J. Li, X. Zhu, Y. Cao, S. Komarneni, Ind. Eng. Chem. Res. 56 (2017) 12717 (http://dx.doi.org/10.1021/acs.iecr.7b01888).