Microextraction of lanthanum using a rotating microchannel extractor Scientific paper
Main Article Content
Abstract
This work introduced a novel microchannel extractor. The extraction system was intended to extract lanthanum nitrate aqueous solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA). Different feeding methods and inner rotors were explored first. The results showed that parallel feeding and inner rotors engraved with spiral stripes were more favorable for extraction. Next, the effect of various factors on the extraction was explored, including the aqueous phase pH, rotational inner rotor speed (R) and the fluid volumetric flow rate (Q). The results showed that these factors are closely related to the extraction. Finally, the experiment was verified by CFD numerical simulation, the simulation result was consistent with the experiment. In this device, active mixing was introduced into the microchannel extraction, which significantly improved the extraction efficiency. Under certain conditions, the extraction efficiency of this device exceeded stirring extraction equilibrium. Moreover, the extraction in the device is faster than with conventional stirring extraction. These advantages provide a possibility for highly efficient extraction of rare earth elements.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
National Natural Science Foundation of China
Grant numbers 21776181 -
Sichuan University
Grant numbers 2018SCUH0012 -
Sichuan Province Science and Technology Support Program
Grant numbers 2021YFG0285
References
R. K. Jyothi, T. Thenepalli, J. W. Ahn, P. K. Parhi, K. W. Chung, J. Y. Lee, J. Clean Prod. 267 (2020) 122048 (http://dx.doi.org/10.1016/j.jclepro.2020.122048)
A. Soukeur, A. Szymczyk, Y. Berbar, M. Amara, Sep. Purif. Technol. 256 (2021) 117857 (http://dx.doi.org/10.1016/j.seppur.2020.117857)
V. V. Belova, M. M. Martynova, Y. V. Tsareva, V. E. Baulin, D. V. Baulin, J. Mol. Liq. 293 (2019) 111568 (http://dx.doi.org/10.1016/j.molliq.2019.111568)
R. Panda, M. K. Jha, J. Hait, G. Kumar, R. J. Singh, K. Yoo, Hydrometallurgy 165 (2016) 106 (http://dx.doi.org/10.1016/j.hydromet.2015.10.019)
W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Hydrometallurgy 171 (2017) 27 (http://dx.doi.org/10.1016/j.hydromet.2017.04.007)
C. Shi, D. Duan, Y. Jia, Y. Jing, J. Mol. Liq. 200 (2014) 191 (http://dx.doi.org/10.1016/j.molliq.2014.10.004)
R. Ma, C. Fan, Y. Wang, J. Luo, J. Li, Y. Ji, Chem. Eng. Process. 151 (2020) 107916 (http://dx.doi.org/10.1016/j.cep.2020.107916)
F. Xie, T. A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 56 (2014) 10 (http://dx.doi.org/10.1016/j.mineng.2013.10.021)
P. A. Quadros, C. M. S. G. Baptista, Chem. Eng. Sci. 58 (2003) 3935 (http://dx.doi.org/10.1016/S0009-2509(03)00302-6)
A. M. Dehkordi, Ind. Eng. Chem. Res. 40 (2001) 681 (http://dx.doi.org/10.1021/ie000279s)
R. P. Verma, M. M. Sharma, Chem. Eng. Sci. 30 (1975) 279 (http://dx.doi.org/10.1016/0009-2509(75)80078-9)
M. N. Kashid, I. Gerlach, S. Goetz, J. Franzke, J. F. Acker, F. Platte, D. W. Agar, S. Turek, Ind. Eng. Chem. Res. 44 (2005) 5003 (http://dx.doi.org/10.1021/ie0490536)
Y. He, K. Chen, C. Srinivasakannan, S. Li, S. Yin, J. Peng, Chem. Eng. J. 354 (2018) 1068 (http://dx.doi.org/10.1016/j.cej.2018.07.193)
K. Wang, G. Luo, Chem. Eng. Sci. 169 (2017) 18 (http://dx.doi.org/10.1016/j.ces.2016.10.025)
G. Orsi, M. Roudgar, E. Brunazzi, C. Galletti, R. Mauri, Chem. Eng. Sci. 95 (2013) 174 (http://dx.doi.org/10.1016/j.ces.2013.03.015)
D. N. Ambare, S. A. Ansari, M. Anitha, P. Kandwal, D. K. Singh, H. Singh, P. K. Mohapatra, J. Membr. Sci. 446 (2013) 106 (http://dx.doi.org/10.1016/j.memsci.2013.06.034)
M. Nakase, R. Makabe, K. Takeshita, J. Nucl. Sci. Technol. 50 (2013) 287 (http://dx.doi.org/10.1080/00223131.2013.772445)
M. Nakase, H. Kinuhata, K. Takeshita, J. Nucl. Sci. Technol. 50 (2013) 1089 (http://dx.doi.org/10.1080/00223131.2013.835248)
C. Xu, T. Xie, Ind. Eng. Chem. Res. 56 (2017) 7593 (http://dx.doi.org/10.1021/acs.iecr.7b01712)
P. Erfle, J. Riewe, H. Bunjes, A. Dietzel, Micromachines 10 (2019) 220 (http://dx.doi.org/10.3390/mi10040220)
Q. Li, P. Angeli, Chem. Eng. Sci. 143 (2016) 276 (http://dx.doi.org/10.1016/j.ces.2016.01.004)
S. Yin, J. Pei, J. Peng, L. Zhang, C. Srinivasakannan, Hydrometallurgy 175 (2018) 64 (http://dx.doi.org/10.1016/j.hydromet.2017.10.027)
J. Chang, F. Jia, C. Srinivasakannan, K. A. Mumford, X. Yang, Chem. Eng. Process. 137 (2019) 54 (http://dx.doi.org/10.1016/j.cep.2019.02.001)
S. Dai, J. Luo, J. Li, X. Zhu, Y. Cao, S. Komarneni, Ind. Eng. Chem. Res. 56 (2017) 12717 (http://dx.doi.org/10.1021/acs.iecr.7b01888).