Mass transfer process study of Fe (III) extraction from ammonium dihydrogen phosphate solution

Main Article Content

Weiqi Li
Hui Liu
Jun Li
Jianhong Luo
Lan Sun

Abstract

The crystallization of ammonium dihydrogen phosphate (MAP) is largely affected by certain metal ions such as Fe (III), and the influence seems to be pointed at both ends. Therefore, the industrial-grade MAP products can only be obtained by purifying the neutralized MAP solution from wet-process phosphoric acid (WPA). The extraction kinetics of Fe (III) from MAP solution using di-2-ethylhexyl phosphoric acid (D2EHPA) in sulfonated kerosene mea­sured by the Lewis cell. The extraction mechanism is discussed and confirmed on the basis of the dimeric model of D2EHPA in non-polar solution. From the temperature dependence of reaction rate, the value of Ea and Kf are cal­culated and the extraction regimes are deduced to be mixed controlled with dif­fusion and chemical reaction for Fe (III). Ultimately, the rate equation for the ext­ract­ion reaction of Fe (III) with D2EHPA is obtained as follows:
Rf = 0.028cFe3+1.2cH2A20.81cH+-0.85.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
W. Li, H. Liu, J. Li, J. Luo, and L. Sun, “Mass transfer process study of Fe (III) extraction from ammonium dihydrogen phosphate solution”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1055–1065, Aug. 2020.
Section
Chemical Engineering

References

S. D. Wang, H. Y. Zhang, J. Li, Inorg. Chem. Ind. 4 (2008) 39 (http://www.wjygy.com.cn/CN/abstract/abstract163.shtml)

S. T. Kuang, Z. F. Zhang, Y. L. Li, H. Q. Wei, W. P. Liao, Hydrometallurgy 174 (2017) 78 (https://dx.doi.org/10.1016/j.hydromet.2017.09.011)

Y. C. Hoh, W. S. Chuang, B. D. Lee, C. C. Chang, Hydrometallurgy 12 (1984) 375 (https://dx.doi.org/10.1016/0304-386X(84)90008-2)

A. M. Chekmarev, E. S. Kondratyeva, V. A. Kolesnikov, Gubin, A. F, Dokl. Chem. 464 (2015) 221 (https://dx.doi.org/10.1134/S0012500815090013)

Y. Liu, M. Lee, J. Ind. Eng. Chem. 28 (2015) 322 (https://dx.doi.org/10.1016/j.jiec.2015.03.010)

K. K. Sahu, R. P. Das, Metall. Mater. Trans., B 31 (2000) 1169 (https://dx.doi.org/10.1007/s11663-000-0003-5)

B. H. Yao, N. Yukio, S. Masatada, N. Akihiko, H. Kiyoshi, Solvent Extr. Ion Exch. 14 (1996) 849 (http://dx.doi.org/10.1080/07366299608918372)

J. P. Simonin, H. Hendrawan, F. Dardoize, G. Clodic, Hydrometallurgy 69 (2003) 23 (http://dx.doi.org/10.1016/S0304-386X(02)00211-6)

Z. Zheng, J. Lu, D. Q. Li, G. X. Ma, Chem. Eng. Sci. 53 (1998) 2327 (http://dx.doi.org/10.1016/s0009-2509(98)00067-0)

I. Van de Voorde, L. Pinoy, E. Courtijn, F. Verpoort, Hydrometallurgy 78 (2005) 92 (http://dx.doi.org/10.1016/j.hydromet.2005.02.008)

R. K. Biswas, M. G. K. Mondal, Hydrometallurgy 69 (2003) 117 (http://dx.doi.org/10.1016/s0304-386x(02)00208-6)

F. Islam, R. K. Biswas, J. Inorg. Nucl. Chem. 40 (1978) 559 (http://dx.doi.org/10.1016/0022-1902(78)80442-4)

D. B. Wu, X. L. Wang, D. Q. Li, Chem. Eng. Process. 46 (2007) 17 (http://dx.doi.org/10.1016/j.cep.2006.04.007)

D. B. Wu, Y. Xiong, D. Q. Li, Hydrometallurgy 82 (2006) 176 (http://dx.doi.org/10.1016/j.hydromet.2006.03.042)

P. R. Danesi, R. Chiarizia, C. F. Coleman, Crit. Rev. Anal. Chem. 10 (1980) 1 (http://dx.doi.org/10.1080/10408348008085494).

Similar Articles

You may also start an advanced similarity search for this article.