Mass transfer process study of Fe (III) extraction from ammonium dihydrogen phosphate solution

Weiqi Li, Hui Liu, Jun Li, Jianhong Luo, Lan Sun

Abstract


The crystallization of ammonium dihydrogen phosphate (MAP) is largely influenced by certain metal ions such as Fe (III), which seems to be pointed at both ends. Therefore, industrial-grade MAP products can only be obtained by purifying the neutralized MAP solution from wet-process phosphoric acid (WPA). The extraction kinetics of Fe (III) from MAP solution using di-2-ethylhexyl phosphoric acid (D2EHPA) in sulfonated kerosene measured by the Lewis cell. Extraction mechanism is discussed and confirmed on the basis of the dimeric model of D2EHPA in non-polar solution. From the temperature dependence of rate measurement, the value of Ea and Kf are calculated and the extraction regimes are deduced to be mixed controlled with diffusion and chemical reaction for Fe (III). Ultimately, the rate equation for the extraction reaction of Fe (III) with D2EHPA is obtained as follows:

Rf = 0.028 cFe3+1.2cH2A20.81cH+-0.85


Keywords


Extraction kinetics; D2EHPA; Fe (III); MAP

Full Text:

PDF (1.757 kB)

References


S. D. Wang, H. Y. Zhang, J. Li, Inorganic Chemicals Industry. 4 (2008) 39 (http://www.wjygy.com.cn/CN/abstract/abstract163.shtml)

S. T. Kuang, Z. F. Zhang, Y. L. Li, H. Q. Wei, W. P. Liao, Hdrometallurgy. 174 (2017) 78 (https://dx.doi.org/10.1016/j.hydromet.2017.09.011)

Y. C. Hoh, W. S. Chuang, B. D. Lee, C. C. Chang, Hydrometallurgy. 12 (1984) 375 (https://dx.doi.org/10.1016/0304-386X(84)90008-2)

A. M. Chekmarev, E. S. Kondratyeva, V. A. Kolesnikov, Gubin, A. F, Dokl. Chem. 464 (2015) 221 (https://dx.doi.org/10.1134/S0012500815090013)

Y. Liu, M. Lee, J. Ind. Eng. Chem. 28 (2015) 322 (https://dx.doi.org/10.1016/j.jiec.2015.03.010)

K. K. Sahu, R. P. Das, Metall. Mater. Trans. B. 31 (2000) 1169 (https://dx.doi.org/10.1007/s11663-000-0003-5)

B. H. Yao, N. Yukio, S. Masatada, N. Akihiko, H. Kiyoshi, Solvent Extr. Ion Exch. 14 (1996) 849 (http://dx.doi.org/10.1080/07366299608918372)

J. P. Simonin, H. Hendrawan, F. Dardoize, G. Clodic, Hydrometallurgy. 69 (2003) 23 (http://dx.doi.org/10.1016/S0304-386X(02)00211-6)

Z. Zheng, J. Lu, D. Q. Li, G. X. Ma, Chem. Eng. Sci. 53 (1998) 2327 (http://dx.doi.org/10.1016/s0009-2509(98)00067-0)

I. Van de Voorde, L. Pinoy, E. Courtijn, F. Verpoort, Hydrometallurgy. 78 (2005) 92 (http://dx.doi.org/10.1016/j.hydromet.2005.02.008)

R. K. Biswas, M. G. K. Mondal, Hydrometallurgy. 69 (2003) 117 (http://dx.doi.org/10.1016/s0304-386x(02)00208-6)

F. Islam, R. K. Biswas, J. Inorg. Nucl. Chem. 40 (1978) 559 (http://dx.doi.org/10.1016/0022-1902(78)80442-4)

D. B. Wu, X. L. Wang, D. Q. Li, CHEM. ENG. PROCESS. 46 (2007) 17 (http://dx.doi.org/10.1016/j.cep.2006.04.007)

D. B. Wu, Y. Xiong, D. Q. Li, Hydrometallurgy. 82 (2006) 176 (http://dx.doi.org/10.1016/j.hydromet.2006.03.042)

P. R. Danesi, R. Chiarizia, C. F. Coleman, Crit. Rev. Anal. Chem. 10 (1980) 1 (http://dx.doi.org/10.1080/10408348008085494)




Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)