Mass transfer process study of Fe (III) extraction from ammonium dihydrogen phosphate solution
Main Article Content
Abstract
The crystallization of ammonium dihydrogen phosphate (MAP) is largely affected by certain metal ions such as Fe (III), and the influence seems to be pointed at both ends. Therefore, the industrial-grade MAP products can only be obtained by purifying the neutralized MAP solution from wet-process phosphoric acid (WPA). The extraction kinetics of Fe (III) from MAP solution using di-2-ethylhexyl phosphoric acid (D2EHPA) in sulfonated kerosene measured by the Lewis cell. The extraction mechanism is discussed and confirmed on the basis of the dimeric model of D2EHPA in non-polar solution. From the temperature dependence of reaction rate, the value of Ea and Kf are calculated and the extraction regimes are deduced to be mixed controlled with diffusion and chemical reaction for Fe (III). Ultimately, the rate equation for the extraction reaction of Fe (III) with D2EHPA is obtained as follows:
Rf = 0.028cFe3+1.2cH2A20.81cH+-0.85.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. D. Wang, H. Y. Zhang, J. Li, Inorg. Chem. Ind. 4 (2008) 39 (http://www.wjygy.com.cn/CN/abstract/abstract163.shtml)
S. T. Kuang, Z. F. Zhang, Y. L. Li, H. Q. Wei, W. P. Liao, Hydrometallurgy 174 (2017) 78 (https://dx.doi.org/10.1016/j.hydromet.2017.09.011)
Y. C. Hoh, W. S. Chuang, B. D. Lee, C. C. Chang, Hydrometallurgy 12 (1984) 375 (https://dx.doi.org/10.1016/0304-386X(84)90008-2)
A. M. Chekmarev, E. S. Kondratyeva, V. A. Kolesnikov, Gubin, A. F, Dokl. Chem. 464 (2015) 221 (https://dx.doi.org/10.1134/S0012500815090013)
Y. Liu, M. Lee, J. Ind. Eng. Chem. 28 (2015) 322 (https://dx.doi.org/10.1016/j.jiec.2015.03.010)
K. K. Sahu, R. P. Das, Metall. Mater. Trans., B 31 (2000) 1169 (https://dx.doi.org/10.1007/s11663-000-0003-5)
B. H. Yao, N. Yukio, S. Masatada, N. Akihiko, H. Kiyoshi, Solvent Extr. Ion Exch. 14 (1996) 849 (http://dx.doi.org/10.1080/07366299608918372)
J. P. Simonin, H. Hendrawan, F. Dardoize, G. Clodic, Hydrometallurgy 69 (2003) 23 (http://dx.doi.org/10.1016/S0304-386X(02)00211-6)
Z. Zheng, J. Lu, D. Q. Li, G. X. Ma, Chem. Eng. Sci. 53 (1998) 2327 (http://dx.doi.org/10.1016/s0009-2509(98)00067-0)
I. Van de Voorde, L. Pinoy, E. Courtijn, F. Verpoort, Hydrometallurgy 78 (2005) 92 (http://dx.doi.org/10.1016/j.hydromet.2005.02.008)
R. K. Biswas, M. G. K. Mondal, Hydrometallurgy 69 (2003) 117 (http://dx.doi.org/10.1016/s0304-386x(02)00208-6)
F. Islam, R. K. Biswas, J. Inorg. Nucl. Chem. 40 (1978) 559 (http://dx.doi.org/10.1016/0022-1902(78)80442-4)
D. B. Wu, X. L. Wang, D. Q. Li, Chem. Eng. Process. 46 (2007) 17 (http://dx.doi.org/10.1016/j.cep.2006.04.007)
D. B. Wu, Y. Xiong, D. Q. Li, Hydrometallurgy 82 (2006) 176 (http://dx.doi.org/10.1016/j.hydromet.2006.03.042)
P. R. Danesi, R. Chiarizia, C. F. Coleman, Crit. Rev. Anal. Chem. 10 (1980) 1 (http://dx.doi.org/10.1080/10408348008085494).