Optimization of the reaction conditions for the synthesis of 2,3,5-trimethylpyridine from 3-amino-2-methylpropenal and methylethylketone Short Communication

Main Article Content

Jovica Urošević
Miroslav Mitić
https://orcid.org/0000-0003-3658-9921
Biljana Arsić
https://orcid.org/0000-0002-1248-5864
Gordana Stojanović
https://orcid.org/0000-0002-3128-6510

Abstract

The influence of temperature, reaction time, and type of the catalyst on the yield of the 2,3,5-trimethylpyridine (collidine) from 3-ami­no-2-methyl­propenal and methylethylketone was investigated. 3-Amino-2-methylpropenal was synthesized from 3-ethoxy-2-methylacrolein previously synthesized from me­thylmalondialdehyde tetraethyl acetal, obtained from triethyl orthoformate and propenyl ether. The optimal conditions for the investigated synthesis were tempe­ra­ture of 150 °C, reaction time 24 h, and the CH3COOH/pTsOH catalyst. This synthesis is the first successful attempt to synthesize 2,3,5-trimethyl­pyri­dine in an acid medium.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Urošević, M. Mitić, B. Arsić, and G. . Stojanović, “Optimization of the reaction conditions for the synthesis of 2,3,5-trimethylpyridine from 3-amino-2-methylpropenal and methylethylketone: Short Communication”, J. Serb. Chem. Soc., vol. 87, no. 10, pp. 1117–1123, May 2022.
Section
Organic Chemistry

Funding data

References

J. C. Sih (Upjohn Co.), US4575554 (1986)

A. Eckert, S. Loria, Monatsh. Chem. 38 (1917) 225 (https://doi.org/10.1007/BF01524213)

M. P. Oparina, Ber. Dtsch. Chem. Ges., B 64 (1931) 562 (https://doi.org/10.1002/cber.19310640311)

T. Eguchi, Bull. Chem. Soc. Jpn. 3 (1928) 235 (https://doi.org/10.1246/bcsj.3.235)

J. Herzenberg, G. Boccato, Chim. Ind. (Paris) 80 (1958) 248

K. Tsuda, N. Ikekawa, H. Mishima, A. Iino, T. Morishige, Pharm. Bull. 1 (1953) 122 (https://doi.org/10.1248/cpb1953.1.122)

G. Errera, Ber. Dtsch. Chem. Ges. 34 (1901) 3691 (https://doi.org/10.1002/cber.19010340367)

E. Breitmaier, S. Gassenmann, Chem. Ber. 104 (1971) 665 (https://doi.org/10.1002/cber.19711040234)

Y. Wakatsuki, H. Yamazaki, Synthesis 1976 (1976) 26 (https://doi.org/10.1055/s-1976-23943)

N. Srinivas, V. Radha Rani, S. J. Kulkarni, K. V. Raghavan, J. Catal. 208 (2002) 332 (https://doi.org/10.1006/jcat.2002.3538)

D.-S. Kim, J.-W. Park, C.-H. Jun, Chem. Commun. 48 (2012) 11334 (https://doi.org/10.1039/C2CC36699A)

J. M. Neely, T. Rovis, J. Am. Chem. Soc. 136 (2014) 2735 (https://doi.org/10.1021/ja412444d)

V. T. Klimko, T.V. Protopopova, N.V. Smirnova, A.P. Skoldinov, Zh. Obshch. Khim. 32 (1962) 2961

V. T. Klimko, T.V. Protopopova, A. P. Skoldinov, SU136351A1 (1960)

J. Vymetal, Z. Hejda, Collect. Czech. Chem. Commun. 43 (1978) 3024 (https://doi.org/10.1135/cccc19783024).

Most read articles by the same author(s)