Synthesis of methyl 3,4-anhydro-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-α-D-allopyranoside from α-D-glucose Scientific paper

Main Article Content

Đorđe Glišin
Olga Jovanović
Gordana Stojanović
https://orcid.org/0000-0002-3128-6510
Aleksandra Živković
Dragan Stojanović
Marina Pavlović
https://orcid.org/0009-0007-3649-3993
Biljana Arsić
https://orcid.org/0000-0002-1248-5864

Abstract

Some of simple carbohydrates and their derivatives are used for the clinical treatment of various diseases. Epoxide derivatives, which can be obtained by the intramolecular elimination of water from two vicinal hydroxyl groups, are stable, but sufficiently reactive compounds very often used as intermed­i­aries in various syntheses. Synthesis of epoxide derivative, methyl 3,4-anhydro-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-α-d-allopyranoside from α-d-glu­cose was achieved in high yields in the minimal number of synthetic steps. Anhydrous glucose was used as a starting material which was trans­formed into methyl α-d-glucopyranoside using dry, gaseous hydrogen chloride. Thus obtained derivative was treated with benzaldehyde in the presence of zinc chloride as Lewis acid giving methyl (R)-4,6-O-benzylidene-α-d-glucopyrano­side. The obtained compound was treated with N-bromosuccinimide (NBS) in dichloro­methane in the presence of barium carbonate giving methyl 4-O-benzoyl-6-bromo-6-deoxy-α-d-glucopyranoside. In the next step, the obtained compound was treated with tert-butyldimethylsilyl chloride (TBDMSCl) in pyridine, and methyl 4-O-benzoyl-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-α-d-glu­co­pyranoside was further mesylated, and the obtained methyl 4-O-benzoyl-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-3-O-mesyl-α-d-glucopyranoside was treated at the end with KOH to give methyl 3,4-anhydro-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-α-d-allopyranoside (yield 78 %).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Đorđe Glišin, “Synthesis of methyl 3,4-anhydro-6-bromo-2-O-tert-butyldimethylsilyl-6-deoxy-α-D-allopyranoside from α-D-glucose: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 9, pp. 1123–1131, Sep. 2024.
Section
Organic Chemistry

References

S. A. Barkes, E. J. Bourne, Adv. Carbohydr. Chem. 7 (1952) 137 (https://doi.org/10.1016/S0096-5332(08)60084-3)

A. N. De Belder, Adv. Carbohydr. Chem. 20 (1965) 219 (https://doi.org/10.1016/S0096-5332(08)60300-8)

N. Mishra, V. K. Tiwari, R. R. Schmidt, in Synthesis and Application, V. Kumar Tiwari, Ed., Elsevier Inc., Amsterdam, 2020, pp. 1–69 (https://doi.org/10.1016/B978-0-12-816675-8.00001-4)

C. Piantadosi, C. E. Anderson, E. A. Brecht, C. L. Yarbro, J. Am. Chem. Soc. 80 (1958) 6613 (https://doi.org/10.1021/ja01557a040)

S. Penjarla, S. R. Prasad, D. S. Reddy, S. Banerjee, S. Penta, Y. S. Sanghvi, Nucleosides Nucleotides Nucleic Acids 37 (2018) 232 (https://doi.org/10.1080/15257770.2018.1460480)

J. S. Brimacombe, A. B. Foster, B. D. Jones, J. J. Willard, J. Chem. Soc., C (1967) 2404 (https://doi.org/10.1039/J39670002404)

E. J. Corey, A.Venkateswarlu, J. Am. Chem. Soc. 94 (1972) 6190 (https://doi.org/10.1021/ja00772a043)

V. H. Jadhav, S. B. Lee, H.-J. Jeong, S. T. Lim, M.-H. Sohn, D.W. Kim, Tetrahedron Lett. 53 (2012) 2051 (https://doi.org/10.1016/j.tetlet.2012.02.016)

K. K. Ogilvie, D. J. Iwacha, Tetrahedron Lett. 14 (1973) 317 (https://doi.org/10.1016/S0040-4039(01)95650-3)

T. Halmos, R. Montserret, J. Filippi, K. Antonakis, Carbohydr. Res. 170 (1987) 57 (https://doi.org/10.1016/0008-6215(87)85005-X)

A. Das, A. Bhaumik, T. Pathak, Carbohydr. Res. 487 (2020) 107870 (https://doi.org/10.1016/j.carres.2019.107870)

Dj. Glišin, O. Jovanović, G. Stojanović, Zbornik radova Filozofskog fakulteta u Nišu, serija fizika i hemija 1 (1988) 137 (UDK 542.91:547.455.6) (in Serbian)

H. S. El Khadem, Carbohydrates in Encyclopedia of Physical Science and Technology (Third ed.), Academic Press, Cambridge, MA, 2003, pp. 369–416 (https://doi.org/10.1016/B0-12-227410-5/00080-6)

O. Achmatowicz, R. Bielski, Carbohydr. Res. 55 (1977) 165 (https://doi.org/10.1016/S0008-6215(00)84452-3)

D. M. Hall, Carbohydr. Res. 86 (1980) 158 (https://doi.org/10.1016/S0008-6215(00)84593-0)

M. E. Evans, Carbohydr. Res. 21 (1972) 473 (https://doi.org/10.1016/S0008-6215(00)84931-9)

J. W. Van Cleve, Carbohydr. Res. 17 (1971) 461 (https://doi.org/10.1016/S0008-6215(00)82557-4)

S. Hanessian, in General Carbohydrate Method, R. L. Whistler, J. N. BeMiller, Eds., Academic Press, Cambridge, MA, 1972, pp. 183–189 (https://doi.org/10.1016/B978-0-12-746206-6.50035-7)

S. Hanessian, N. R. Plessas, J. Org. Chem. 34 (1969) 1035 (https://doi.org/10.1021/jo01256a059)

A. M. Castillo, L. Patiny, J. Wist, J. Magn. Reson. 209 (2011) 123 (https://doi.org/10.1016/j.jmr.2010.12.008)

M. M. Manson, Br. J. Ind. Med. 37 (1980) 317 (https://doi.org/10.1136/oem.37.4.317)

B. Kaur, P. Singh, Bioorg. Chem. 125 (2022) 105862 (https://doi.org/10.1016/j.bioorg.2022.105862).

Most read articles by the same author(s)