Comparison of non-destructive techniques and conventionally used spectrometric techniques for determination of elements in plant samples (coniferous leaves) Scientific paper

Main Article Content

Jovana Orlić
https://orcid.org/0000-0002-0338-2441
Mira Aničić Urošević
https://orcid.org/0000-0001-6917-5368
Konstantin Vergel
https://orcid.org/0000-0001-8158-5589
Inga Zinicovscaia
Sanja Stojadinović
https://orcid.org/0000-0002-7848-0580
Ivan Gržetić
Konstantin Ilijević
https://orcid.org/0000-0002-3905-0019

Abstract

Conventionally used spectrometric techniques of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma optical emission spectrometry (ICP-MS) usually involve time-con­suming sample preparation procedure of a sample dis­solution which requires the usage of aggressive and toxic chemicals. The need for suitable and sus­tainable analytical methods for direct multi-elemental ana­lysis of plant samples has been increased in recent years. Spectrometric tech­niques for direct sample analysis, instrumental neutron activation analysis (INAA) and X-ray fluores­cence (XRF) have been applied in environ­mental studies and various fields of screening tests. Nevertheless, these tech­niques are not commonly used for plant sample analysis and their performances need to be evaluated. This research aimed to assess how reliable non-des­tructive techniques are in the determin­ation of elements in plants compared to conventionally used spectrometric techniques. A total of 49 plant samples of four conifer species (Pinus nigra, Abies alba, Taxus baccata and Larix deci­dua) were measured using two con­ventionally applied (ICP-MS, ICP-OES) and two non-destructive techniques (wavelength dispersive XRF (WD-XRF), INAA). The comparison was per­formed by investigation of relative ratios of concentrations and by correlation analysis. Moreover, precision of the techniques was examined and compared. The quality control included analysis of NIST pine needles certified reference material (1575a) using all examined techniques. Our results suggest that addit­ional analytical and quality control steps are necessary for reaching the highest accuracy of multi-elemental analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Orlić, “Comparison of non-destructive techniques and conventionally used spectrometric techniques for determination of elements in plant samples (coniferous leaves): Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 1, pp. 69–81, Jan. 2022.
Section
In Memoriam Issue Devoted to Prof. Petar Pfendt

References

W. E. Stephens, A. Calder, Anal. Chim. Acta 527 (2004) 89 (https://doi.org/10.1016/j.aca.2004.08.015)

I. Queralt, M. Ovejero, M. L. Carvalho, A. F. Marques, J. M. Llabrés, X-Ray Spectrom. 34 (2005) 213 (https://doi.org/10.1002/xrs.795)

C. Kilbride, J. Poole, T. R. Hutchings, Environ. Pollut. 143 (2006) 16 (https://doi.org/10.1016/j.envpol.2005.11.013)

S. Reidinger, M. H. Ramsey, S. E. Hartley, New Phytol. (2015) 699 (https://doi.org/10.1111/j.1469-8137.2012.04179.x)

H. Polkowska-Motrenko, B. Danko, R. Dybczyński, A. Koster-Ammerlaan, P. Bode, Anal. Chim. Acta 408 (2000) 89 (https://doi.org/10.1016/S0003-2670(99)00867-3)

S. C. C. Arruda, A. P. M. Rodriguez, M. A. Z. Arruda, J. Braz. Chem. Soc. 14 (2003) 470 (https://doi.org/10.1590/S0103-50532003000300023)

E. Marguí, I. Queralt, M. L. Carvalho, M. Hidalgo, Anal. Chim. Acta 549 (2005) 197 (https://doi.org/10.1016/j.aca.2005.06.035)

A. Gałuszka, Z. M. Migaszewski, P. Konieczka, J. Namieśnik, Trends Anal. Chem. 37 (2012) 61 (https://doi.org/10.1016/j.trac.2012.03.013)

S. Armenta, S. Garrigues, M. de la Guardia, Trends Anal. Chem. 71 (2015) 2 (https://doi.org/10.1016/j.trac.2014.12.011)

J. Płotka-Wasylka, Talanta 181 (2018) 204 (https://doi.org/10.1016/j.talanta.2018.01.013)

K. Chojnacka, M. Mikulewicz, Trends Anal. Chem. (2019) 254 (https://doi.org/10.1016/j.trac.2019.02.013)

M. V. Frontasyeva, Phys. Part. Nucl. 42 (2011) 332 (https://doi.org/10.1134/S1063779611020043)

A. Taftazani, R. Roto, N. R. Ananda, S. Murniasih, Indones. J. Chem. 17 (2017) 228 (https://doi.org/10.22146/ijc.17686)

E. T. Tousi, M. M. Firoozabadi, M. Shiva, E. Taghizadeh, M. Mehdi, M. Shiva, Measurement 90 (2016) 20 (https://doi.org/10.1016/j.measurement.2016.04.020)

R. Acharya, P. K. Pujari, Forensic Chem. 12 (2019) 107 (https://doi.org/10.1016/j.forc.2018.01.002)

K. Vergel, I. Zinicovscaia, N. Yushin, M. V. Frontasyeva, Bull. Environ. Contam. Toxicol. 103 (2019) 435 (https://doi.org/10.1007/s00128-019-02672-4)

C. Anderson, F. Moreno, F. Geurts, C. Wreesmann, M. Ghomshei, J. Meech, Microchem. J. 81 (2005) 81 (https://doi.org/10.1016/j.microc.2005.01.004)

G. Budak, I. Aslan, A. Karabulut, E. Tiraşoǧlu, J. Quant. Spectrosc. Radiat. Transf. 101 (2006) 195 (https://doi.org/10.1016/j.jqsrt.2005.11.013)

N. Ekinci, R. Ekinci, R. Polat, G. Budak, J. Radioanal. Nucl. Chem. 260 (2004) 127 (https://doi.org/10.1023/B:JRNC.0000027071.72742.ee)

M. Z. Abdullah, A. Saat, Z. Hamzah, Am. J. Eng. Appl. Sci. 4 (2011) 355 (https://doi.org/10.3844/ajeassp.2011.355.362)

J. Orlić, I. Gržetić, K. Ilijević, Spectrochim. Acta, B 184 (2021). (https://doi.org/10.1016/j.sab.2021.106258) 106258

C. M. Wu, H. T. Tsai, K. H. Yang, J. C. Wen, Environ. Forensics 13 (2012) 110 (https://doi.org/10.1080/15275922.2012.676603)

D. Andrey, J. P. Dufrier, L. Perring, Spectrochim. Acta, B 148 (2018) 137 (https://doi.org/10.1016/j.sab.2018.06.014)

T. Radu, D. Diamond, J. Hazard. Mater. 171 (2009) 1168 (https://doi.org/10.1016/j.jhazmat.2009.06.062)

C. Vanhoof, V. Corthouts, K. Tirez, J. Environ. Monit. 6 (2004) 344 (https://doi.org/10.1039/b312781h)

A. S. G. Thaisa, P. D. G. Rennan, D. S. Severina, E. R. M. C. M. Mário, E. M. D. Maria, M. F. D. F. Rossana, T. M. Ricardo, Afr. J. Biotechnol. 14 (2015) 3333 (https://doi.org/10.5897/ajb2015.14925)

E. V. Chuparina, T. N. Gunicheva, J. Anal. Chem. 58 (2003) 856 (https://doi.org/10.1023/A:1025689202055)

T. J. Morgan, A. George, A. K. Boulamanti, P. Álvarez, I. Adanouj, C. Dean, S. V. Vassilev, D. Baxter, L. K. Andersen, Energy Fuels 29 (2015) 1669 (https://doi.org/10.1021/ef502380x)

L. Perring, D. Andrey, X-Ray Spectrom. 33 (2004) 128 (https://doi.org/10.1002/xrs.725)

R. M. Rousseau, Rigaku J. 18 (2001) 33 (https://www.researchgate.net/publication/228687395_Detection_limit_and_estimate_of_uncertainty_of_analytical_XRF_results)

M. V. Frontasyeva, Phys. Part. Nucl. 42 (2011) 332 (https://doi.org/10.1134/S1063779611020043)

J. Orlić, I. Gržetić, W. Goessler, S. Braeuer, J. Čáslavský, J. Pořízka, K. Ilijević, Nucl. Ins. Methods Phys. Res., B 502 (2021) 106 (https://doi.org/10.1016/j.nimb.2021.06.012)

D. Čeburnis, E. Steinnes, Atmos. Environ. 34 (2000) 4265 (https://doi.org/10.1016/S1352-2310(00)00213-2)

M. Pietrzykowski, J. Socha, N. S. van Doorn, Sci. Total Environ. 470–471 (2014) 501 (https://doi.org/10.1016/j.scitotenv.2013.10.008)

M. M. Al-Alawi, K. L. Mandiwana, J. Hazard. Mater. 148 (2007) 43 (https://doi.org/10.1016/j.jhazmat.2007.02.001)

S. M. Serbula, T. S. Kalinovic, A. A. Ilic, J. V Kalinovic, M. M. Steharnik, Aerosol Air Qual. Res. 13 (2013) 563 (https://doi.org/10.4209/aaqr.2012.06.0153)

Oxsas, https://www.thermofisher.com/content/dam/tfs/ATG/CAD/ CAD/Documents/Product/Manuals&Specifications/Elemental/Analysis/XRF/X R-PS41141-OXSAS-XRF-Hi-0713.pdf (accessed September 13, 2021)

UniQuant®, http://www.uniquant.com (accessed September 13, 2021)

M. V. Frontasyeva, S. S. Pavlov, V. N. Shvetsov, J. Radioanal. Nucl. Chem. 286 (2010) 519 (https://doi.org/10.1007/s10967-010-0814-z).

Most read articles by the same author(s)