Comparison of non-destructive techniques and conventionally used spectrometric techniques for determination of elements in plant samples (coniferous leaves) Scientific paper
Main Article Content
Abstract
Conventionally used spectrometric techniques of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma optical emission spectrometry (ICP-MS) usually involve time-consuming sample preparation procedure of a sample dissolution which requires the usage of aggressive and toxic chemicals. The need for suitable and sustainable analytical methods for direct multi-elemental analysis of plant samples has been increased in recent years. Spectrometric techniques for direct sample analysis, instrumental neutron activation analysis (INAA) and X-ray fluorescence (XRF) have been applied in environmental studies and various fields of screening tests. Nevertheless, these techniques are not commonly used for plant sample analysis and their performances need to be evaluated. This research aimed to assess how reliable non-destructive techniques are in the determination of elements in plants compared to conventionally used spectrometric techniques. A total of 49 plant samples of four conifer species (Pinus nigra, Abies alba, Taxus baccata and Larix decidua) were measured using two conventionally applied (ICP-MS, ICP-OES) and two non-destructive techniques (wavelength dispersive XRF (WD-XRF), INAA). The comparison was performed by investigation of relative ratios of concentrations and by correlation analysis. Moreover, precision of the techniques was examined and compared. The quality control included analysis of NIST pine needles certified reference material (1575a) using all examined techniques. Our results suggest that additional analytical and quality control steps are necessary for reaching the highest accuracy of multi-elemental analysis.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
W. E. Stephens, A. Calder, Anal. Chim. Acta 527 (2004) 89 (https://doi.org/10.1016/j.aca.2004.08.015)
I. Queralt, M. Ovejero, M. L. Carvalho, A. F. Marques, J. M. Llabrés, X-Ray Spectrom. 34 (2005) 213 (https://doi.org/10.1002/xrs.795)
C. Kilbride, J. Poole, T. R. Hutchings, Environ. Pollut. 143 (2006) 16 (https://doi.org/10.1016/j.envpol.2005.11.013)
S. Reidinger, M. H. Ramsey, S. E. Hartley, New Phytol. (2015) 699 (https://doi.org/10.1111/j.1469-8137.2012.04179.x)
H. Polkowska-Motrenko, B. Danko, R. Dybczyński, A. Koster-Ammerlaan, P. Bode, Anal. Chim. Acta 408 (2000) 89 (https://doi.org/10.1016/S0003-2670(99)00867-3)
S. C. C. Arruda, A. P. M. Rodriguez, M. A. Z. Arruda, J. Braz. Chem. Soc. 14 (2003) 470 (https://doi.org/10.1590/S0103-50532003000300023)
E. Marguí, I. Queralt, M. L. Carvalho, M. Hidalgo, Anal. Chim. Acta 549 (2005) 197 (https://doi.org/10.1016/j.aca.2005.06.035)
A. Gałuszka, Z. M. Migaszewski, P. Konieczka, J. Namieśnik, Trends Anal. Chem. 37 (2012) 61 (https://doi.org/10.1016/j.trac.2012.03.013)
S. Armenta, S. Garrigues, M. de la Guardia, Trends Anal. Chem. 71 (2015) 2 (https://doi.org/10.1016/j.trac.2014.12.011)
J. Płotka-Wasylka, Talanta 181 (2018) 204 (https://doi.org/10.1016/j.talanta.2018.01.013)
K. Chojnacka, M. Mikulewicz, Trends Anal. Chem. (2019) 254 (https://doi.org/10.1016/j.trac.2019.02.013)
M. V. Frontasyeva, Phys. Part. Nucl. 42 (2011) 332 (https://doi.org/10.1134/S1063779611020043)
A. Taftazani, R. Roto, N. R. Ananda, S. Murniasih, Indones. J. Chem. 17 (2017) 228 (https://doi.org/10.22146/ijc.17686)
E. T. Tousi, M. M. Firoozabadi, M. Shiva, E. Taghizadeh, M. Mehdi, M. Shiva, Measurement 90 (2016) 20 (https://doi.org/10.1016/j.measurement.2016.04.020)
R. Acharya, P. K. Pujari, Forensic Chem. 12 (2019) 107 (https://doi.org/10.1016/j.forc.2018.01.002)
K. Vergel, I. Zinicovscaia, N. Yushin, M. V. Frontasyeva, Bull. Environ. Contam. Toxicol. 103 (2019) 435 (https://doi.org/10.1007/s00128-019-02672-4)
C. Anderson, F. Moreno, F. Geurts, C. Wreesmann, M. Ghomshei, J. Meech, Microchem. J. 81 (2005) 81 (https://doi.org/10.1016/j.microc.2005.01.004)
G. Budak, I. Aslan, A. Karabulut, E. Tiraşoǧlu, J. Quant. Spectrosc. Radiat. Transf. 101 (2006) 195 (https://doi.org/10.1016/j.jqsrt.2005.11.013)
N. Ekinci, R. Ekinci, R. Polat, G. Budak, J. Radioanal. Nucl. Chem. 260 (2004) 127 (https://doi.org/10.1023/B:JRNC.0000027071.72742.ee)
M. Z. Abdullah, A. Saat, Z. Hamzah, Am. J. Eng. Appl. Sci. 4 (2011) 355 (https://doi.org/10.3844/ajeassp.2011.355.362)
J. Orlić, I. Gržetić, K. Ilijević, Spectrochim. Acta, B 184 (2021). (https://doi.org/10.1016/j.sab.2021.106258) 106258
C. M. Wu, H. T. Tsai, K. H. Yang, J. C. Wen, Environ. Forensics 13 (2012) 110 (https://doi.org/10.1080/15275922.2012.676603)
D. Andrey, J. P. Dufrier, L. Perring, Spectrochim. Acta, B 148 (2018) 137 (https://doi.org/10.1016/j.sab.2018.06.014)
T. Radu, D. Diamond, J. Hazard. Mater. 171 (2009) 1168 (https://doi.org/10.1016/j.jhazmat.2009.06.062)
C. Vanhoof, V. Corthouts, K. Tirez, J. Environ. Monit. 6 (2004) 344 (https://doi.org/10.1039/b312781h)
A. S. G. Thaisa, P. D. G. Rennan, D. S. Severina, E. R. M. C. M. Mário, E. M. D. Maria, M. F. D. F. Rossana, T. M. Ricardo, Afr. J. Biotechnol. 14 (2015) 3333 (https://doi.org/10.5897/ajb2015.14925)
E. V. Chuparina, T. N. Gunicheva, J. Anal. Chem. 58 (2003) 856 (https://doi.org/10.1023/A:1025689202055)
T. J. Morgan, A. George, A. K. Boulamanti, P. Álvarez, I. Adanouj, C. Dean, S. V. Vassilev, D. Baxter, L. K. Andersen, Energy Fuels 29 (2015) 1669 (https://doi.org/10.1021/ef502380x)
L. Perring, D. Andrey, X-Ray Spectrom. 33 (2004) 128 (https://doi.org/10.1002/xrs.725)
R. M. Rousseau, Rigaku J. 18 (2001) 33 (https://www.researchgate.net/publication/228687395_Detection_limit_and_estimate_of_uncertainty_of_analytical_XRF_results)
M. V. Frontasyeva, Phys. Part. Nucl. 42 (2011) 332 (https://doi.org/10.1134/S1063779611020043)
J. Orlić, I. Gržetić, W. Goessler, S. Braeuer, J. Čáslavský, J. Pořízka, K. Ilijević, Nucl. Ins. Methods Phys. Res., B 502 (2021) 106 (https://doi.org/10.1016/j.nimb.2021.06.012)
D. Čeburnis, E. Steinnes, Atmos. Environ. 34 (2000) 4265 (https://doi.org/10.1016/S1352-2310(00)00213-2)
M. Pietrzykowski, J. Socha, N. S. van Doorn, Sci. Total Environ. 470–471 (2014) 501 (https://doi.org/10.1016/j.scitotenv.2013.10.008)
M. M. Al-Alawi, K. L. Mandiwana, J. Hazard. Mater. 148 (2007) 43 (https://doi.org/10.1016/j.jhazmat.2007.02.001)
S. M. Serbula, T. S. Kalinovic, A. A. Ilic, J. V Kalinovic, M. M. Steharnik, Aerosol Air Qual. Res. 13 (2013) 563 (https://doi.org/10.4209/aaqr.2012.06.0153)
Oxsas, https://www.thermofisher.com/content/dam/tfs/ATG/CAD/ CAD/Documents/Product/Manuals&Specifications/Elemental/Analysis/XRF/X R-PS41141-OXSAS-XRF-Hi-0713.pdf (accessed September 13, 2021)
UniQuant®, http://www.uniquant.com (accessed September 13, 2021)
M. V. Frontasyeva, S. S. Pavlov, V. N. Shvetsov, J. Radioanal. Nucl. Chem. 286 (2010) 519 (https://doi.org/10.1007/s10967-010-0814-z).