Rate coefficients for electron-impact dissociation of O3+ to singly charged fragments Scientific paper
Main Article Content
Abstract
Rate coefficients for electron-impact dissociation of O3+ to the O+ and O2+ fragments are calculated for the new, recommended cross section data set and for various collisional conditions. Two sets of the cross section data, measured recently by different experimental groups, are used. These cross sections differ significantly with each other, but are renormalized and optimized to the coherent data base. Rate coefficients for the ozone cation fragmentation are determined using the Maxwellian and the non-thermal electron energy distribution functions (EEDF). In the case of Maxwellian distribution, mean electron energies cover the range from zero up to 2 keV. Non-thermal electron energy distribution functions are adopted from the recent electron observations by the 3-D plasma and energetic particles experiment on the WIND spacecraft. The non-thermal rates are evaluated for the mean electron energies from 4 to 80 eV. The role of the possible contribution of electron-impact dissociation of O3+ to the ozone layer depletion has been emphasized.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
References
M. J. Molina, F. S. Rowland, Nature 249 (1974) 810 (https://doi.org/10.1038/249810a0)
J. C. Farman, B. G. Gardiner, J. D. Shanklin, Nature 315 (1985) 207 (https://doi.org/10.1038/315207a0)
V. Vaida, J. D. Simon, Science 268 (1995) 1443 (https://doi.org/10.1126/science.268.5216.1443)
J. A. Davies, W. M. Johnstone, N. J. Mason, P. Biggs, R. P. Wayne, J. Phys., B 26 (1993) L767 (https://doi.org/10.1088/0953-4075/26/21/008)
M. Allan, K. R. Asmis, D. B. Popović, M. Stepanović, N. J. Mason, J. A. Davies, J. Phys., B 29 (1996) 3487 (https://doi.org/10.1088/0953-4075/29/15/020)
C. J. Sweeney, T. W. Shyn, Phys. Rev., A 53 (1996) 1576 (https://doi.org/10.1103/PhysRevA.53.1576)
M. W. Siegel, Int. J. Mass Spectrom. Ion Phys. 44 (1982) 19 (https://doi.org/10.1016/0020-7381(82)80036-3)
K. A. Newson, S. M. Luc, S. D. Price, N. J. Mason, Int. J. Mass Spectrom. Ion Process. 148 (1995) 203 (https://doi.org/10.1016/0168-1176(95)04300-A)
Y.-K. Kim, W. Hwang, N. M. Weinberger, M. A. Ali, M. E. Rudd, J. Chem. Physics 106 (1997) 1026 (https://doi.org/10.1063/1.473186)
Y.-K. Kim, K. K. Irikura, M. E. Rudd, M. A. Ali, P. M. Stone, J. Chang, J. S. Coursey, R. A. Dragoset, A. R. Kishore, K. J. Olsen, A. M. Sansonetti, G. G. Wiersma, D. S. Zucker, M. A. Zucker, NIST Standard Reference Database 107, Electron-Impact Cross Sections for Ionization and Excitation, Vol. 107, 2005, p. 1, NIST, Gaithersburg (http://www.nist.gov/pml/data/ionization/index.cfm)
N. J. Mason, J. M. Gingell, J. A. Davies, H. Zhao, I. C. Walker, M. R. F. Siggel, J. Phys., B 29 (1996) 3075 (https://doi.org/10.1088/0953-4075/29/14/019)
G. de Petris, Mass Spectrom. Rev. 22 (2003) 251 (https://doi.org/10.1002/mas.10053)
V. Zhaunerchyk, W. D. Geppert, M. Larsson, R. D. Thomas, E. Bahati, M. E. Bannister, M. R. Fogle, C. R. Vane, F. Osterdahl, Phys. Rev. Lett. 98 (2007) 223201 (https://doi.org/10.1103/PhysRevLett.98.223201)
M. L. Vestal, G. H. Mauclaire, J. Chem. Phys. 67 (1977) 3767 (https://doi.org/10.1063/1.435317)
S. H. M. Deng, C. R. Vane, M. E. Bannister, M. Fogle, Phys. Rev., A 82 (2010) 062715 (https://doi.org/10.1103/PhysRevA.82.062715)
D. S. Belić, X. Urbain, P. Defrance, Phys. Rev., A 91 (2015) 012703 (https://doi.org/10.1103/PhysRevA.91.012703)
J. Lecointre, D. S. Belić, H. Cherkani-Hassani, J. J. Jureta, P. Defrance. J. Phys., B 39 (2006) 3275 (https://doi.org/10.1088/0953-4075/39/16/011)
D. S. Belić, X. Urbain, H Cherkani-Hassani, P Defrance, Phys. Rev., A 95 (2017) 052702 (https://doi.org/10.1103/PhysRevA.95.052702)
D. S. Belić, M. M. Ristić, H.Cherkani-Hassani, X. Urbain, P. Defrance, Eur. Phys. J., D 74 (2020) 100 (https://doi.org/10.1140/epjd/e2020-100623-1)
M. Ristić, G. B. Poparić, D. S. Belić, Chem. Phys. 331 (2007) 410 (https://doi.org/10.1016/j.chemphys.2006.11.012)
R. P. Lin, in Proceedings of the CESRA Workshop, 1996, Nouan le Fuzelier, France, Springer, Berlin, 1997, p. 93
P. T. Verronen, C. J. Rodger, M. A. Clilverd, S. Wang, J. Geophys. Res. 116 (2011) D07307 (https://doi.org/10.1029/2010JD014965)
M. E. Andersson, P.T. Verronen, C. J. Rodger, M. A. Clilverd, A. Seppälä, Nature Commun. 5 (2014) 5197 (https://doi.org/10.1038/ncomms6197).