Rate coefficients for electron-impact dissociation of O3+ to singly charged fragments Scientific paper

Main Article Content

Dragoljub Belić
https://orcid.org/0000-0002-3985-8288
Mirjana Vojnović
https://orcid.org/0000-0002-6920-6790
Miroslav Mihailo Ristić
https://orcid.org/0000-0003-2164-0288
Xavier Urbain
https://orcid.org/0000-0003-3326-8823
Pierre Defrance
https://orcid.org/0000-0003-0188-2167

Abstract

Rate coefficients for electron-impact dissociation of O3+ to the O+ and O2+ fragments are calculated for the new, recommended cross section data set and for various collisional conditions. Two sets of the cross section data, mea­sured recently by different experimental groups, are used. These cross sec­tions differ significantly with each other, but are renormalized and optimized to the coherent data base. Rate coefficients for the ozone cation fragmentation are determined using the Maxwellian and the non-thermal electron energy distri­bution functions (EEDF). In the case of Maxwellian distribution, mean electron energies cover the range from zero up to 2 keV. Non-thermal electron energy distribution functions are adopted from the recent electron observations by the 3-D plasma and energetic particles experiment on the WIND spacecraft. The non-thermal rates are evaluated for the mean electron energies from 4 to 80 eV. The role of the possible contribution of electron-impact dissociation of O3+ to the ozone layer depletion has been emphasized.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Belić, M. Vojnović, M. M. Ristić, X. Urbain, and P. Defrance, “Rate coefficients for electron-impact dissociation of O3+ to singly charged fragments: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 479–490, Feb. 2022.
Section
Physical Chemistry

References

M. J. Molina, F. S. Rowland, Nature 249 (1974) 810 (https://doi.org/10.1038/249810a0)

J. C. Farman, B. G. Gardiner, J. D. Shanklin, Nature 315 (1985) 207 (https://doi.org/10.1038/315207a0)

V. Vaida, J. D. Simon, Science 268 (1995) 1443 (https://doi.org/10.1126/science.268.5216.1443)

J. A. Davies, W. M. Johnstone, N. J. Mason, P. Biggs, R. P. Wayne, J. Phys., B 26 (1993) L767 (https://doi.org/10.1088/0953-4075/26/21/008)

M. Allan, K. R. Asmis, D. B. Popović, M. Stepanović, N. J. Mason, J. A. Davies, J. Phys., B 29 (1996) 3487 (https://doi.org/10.1088/0953-4075/29/15/020)

C. J. Sweeney, T. W. Shyn, Phys. Rev., A 53 (1996) 1576 (https://doi.org/10.1103/PhysRevA.53.1576)

M. W. Siegel, Int. J. Mass Spectrom. Ion Phys. 44 (1982) 19 (https://doi.org/10.1016/0020-7381(82)80036-3)

K. A. Newson, S. M. Luc, S. D. Price, N. J. Mason, Int. J. Mass Spectrom. Ion Process. 148 (1995) 203 (https://doi.org/10.1016/0168-1176(95)04300-A)

Y.-K. Kim, W. Hwang, N. M. Weinberger, M. A. Ali, M. E. Rudd, J. Chem. Physics 106 (1997) 1026 (https://doi.org/10.1063/1.473186)

Y.-K. Kim, K. K. Irikura, M. E. Rudd, M. A. Ali, P. M. Stone, J. Chang, J. S. Coursey, R. A. Dragoset, A. R. Kishore, K. J. Olsen, A. M. Sansonetti, G. G. Wiersma, D. S. Zucker, M. A. Zucker, NIST Standard Reference Database 107, Electron-Impact Cross Sections for Ionization and Excitation, Vol. 107, 2005, p. 1, NIST, Gaithersburg (http://www.nist.gov/pml/data/ionization/index.cfm)

N. J. Mason, J. M. Gingell, J. A. Davies, H. Zhao, I. C. Walker, M. R. F. Siggel, J. Phys., B 29 (1996) 3075 (https://doi.org/10.1088/0953-4075/29/14/019)

G. de Petris, Mass Spectrom. Rev. 22 (2003) 251 (https://doi.org/10.1002/mas.10053)

V. Zhaunerchyk, W. D. Geppert, M. Larsson, R. D. Thomas, E. Bahati, M. E. Bannister, M. R. Fogle, C. R. Vane, F. Osterdahl, Phys. Rev. Lett. 98 (2007) 223201 (https://doi.org/10.1103/PhysRevLett.98.223201)

M. L. Vestal, G. H. Mauclaire, J. Chem. Phys. 67 (1977) 3767 (https://doi.org/10.1063/1.435317)

S. H. M. Deng, C. R. Vane, M. E. Bannister, M. Fogle, Phys. Rev., A 82 (2010) 062715 (https://doi.org/10.1103/PhysRevA.82.062715)

D. S. Belić, X. Urbain, P. Defrance, Phys. Rev., A 91 (2015) 012703 (https://doi.org/10.1103/PhysRevA.91.012703)

J. Lecointre, D. S. Belić, H. Cherkani-Hassani, J. J. Jureta, P. Defrance. J. Phys., B 39 (2006) 3275 (https://doi.org/10.1088/0953-4075/39/16/011)

D. S. Belić, X. Urbain, H Cherkani-Hassani, P Defrance, Phys. Rev., A 95 (2017) 052702 (https://doi.org/10.1103/PhysRevA.95.052702)

D. S. Belić, M. M. Ristić, H.Cherkani-Hassani, X. Urbain, P. Defrance, Eur. Phys. J., D 74 (2020) 100 (https://doi.org/10.1140/epjd/e2020-100623-1)

M. Ristić, G. B. Poparić, D. S. Belić, Chem. Phys. 331 (2007) 410 (https://doi.org/10.1016/j.chemphys.2006.11.012)

R. P. Lin, in Proceedings of the CESRA Workshop, 1996, Nouan le Fuzelier, France, Springer, Berlin, 1997, p. 93

P. T. Verronen, C. J. Rodger, M. A. Clilverd, S. Wang, J. Geophys. Res. 116 (2011) D07307 (https://doi.org/10.1029/2010JD014965)

M. E. Andersson, P.T. Verronen, C. J. Rodger, M. A. Clilverd, A. Seppälä, Nature Commun. 5 (2014) 5197 (https://doi.org/10.1038/ncomms6197).

Similar Articles

You may also start an advanced similarity search for this article.