Advanced dye removal by multifunctional layered double hydroxide based materials: Adsorption and kinetic studies Scientific paper

Main Article Content

Milica Hadnađev Kostić
https://orcid.org/0000-0001-8091-4213
Tatjana Vulić
https://orcid.org/0000-0001-9431-2846
Đurđica Karanović
https://orcid.org/0000-0001-9715-9461
Marija Milanović
https://orcid.org/0000-0002-7861-2408

Abstract

Due to favourable properties layered double hydroxides (LDHs) have been widely investigated for organic dye removal processes. In order to study the adsorption of methyl orange, bimetal (ZnAl and MgAl) and trimetal (ZnCuAl and MgCuAl) adsorbents were synthesized and thermally treated. The influence of adsorbent metal nature and content on structural (X-ray diffract­ion, Raman analysis), textural (low temperature nitrogen adsorption) and ads­orption pro­perties was investigated. Adsorption behaviour, mech­anisms, and stability of synthesized LDHs and their calcined mixed oxides were studied with the aim to elucidate the adsorbent-dye interactions, enabling optimization of experimental design. All LDH adsorbents and LDH derived mixed oxide adsorbents had high removal efficiency rate, especially Zn-con­taining mixed oxides where complete decolourization (100 % of dye removal) was achieved almost instantly due to super-fast adsorbent-adsorbate interact­ion. Two pos­sible adsorption mechanisms initiated by interfacial phenomena were in correl­ation with the structural and textural properties, as well as with the “memory effect” reconstruction phenomenon. These results present a solid base for further investigation and design of LDH-based adsorbents for the Methyl orange removal, considering their favourable structural and textural properties and excellent adsorption capacities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Hadnađev Kostić, T. Vulić, Đurđica Karanović, and M. Milanović, “Advanced dye removal by multifunctional layered double hydroxide based materials: Adsorption and kinetic studies: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 9, pp. 1011–1024, Aug. 2022.
Section
Inorganic Chemistry

References

H.-Y. Xu, B. L. Ping Li, J. Serb. Chem. Soc. 83 (2018) 1261 (https://doi.org/10.2298/JSC180501060X)

N. Li, Z. Chang, H. Dang, Y. Zhan, J. Lou, S. Wang, S. Attique, W. Li, H. Zhou, C. Sun, Colloids Surfaces, A. 591 (2020) 124507 (https://doi.org/10.1016/j.colsurfa.2020.124507)

T. Guan, L. Fang, Y. Lu, F. Wu, F. Ling, J. Gao, B. Hu, F. Meng, X. Jin, Colloids Surfaces, A 529 (2017) 907 (http://dx.doi.org/10.1016/j.colsurfa.2017.06.049)

M. Abniki, A. Moghimi, F. Azizinejad, J. Serb. Chem. Soc. 85 (2020) 1223 (https://doi.org/10.2298/JSC191011004A)

M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, Adv. Powder Technol. 25 (2014) 1624 (https://doi.org/10.1016/j.apt.2014.05.015)

M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, D. Loncarevic, J. Dostanic, S. Markov, D. Jovanovic, J. Clean. Prod. 164 (2017) 1 (https://doi.org/10.1016/j.jclepro.2017.06.091)

D. Bharali, R. Dekam, Colloids Surfaces, A 525 (2017) (https://doi.org/10.1016/j.colsurfa.2017.04.060)

K. Hassani, B. Beakou, D. Kalnina, E. Oukani, A. Anouar, Appl. Clay Sci. 140 (2017) 124 (https://doi.org/10.1016/j.clay.2017.02.010)

L. Zhang, J. Liu, H. Xia, D. Liu, Y. Qin, H. Wu, H. Li, N. Du, W. Hou, Chem. Eng. J. 250 (2014) 1 (https://doi.org/10.1016/j.cej.2014.03.098)

L. Wu, B. Peng, Q. Li, Q. Wang, X. Yan, K. Li, Q. Lin, New J. Chem. 44 (2020) 5293 (https://doi.org/10.1039/D0NJ00278J)

X. Cheng, X. Huang, X. Wang, D. Sun, J. Hazard. Mater. 177 (2010) 516 (https://doi.org/10.1016/j.jhazmat.2009.12.063)

N. Pathak, S. K. Gupta, L. Prajapat, S. K. Sharma, P. S. Ghosh, B. Kanrar, P. K. Pujariab, R. M.Kadam, Phys. Chem. Chem. Phys. 19 (2017) 11975 (https://doi.org/10.1039/C7CP01776F)

M. Jablonska, L. Chmielarz, A. Wegrzyn, K. Guzik, Z. Piwowarska, S. Witkowski, R. I. Walton, P. W. Dunne, F. Kovanda, J. Therm. Anal. Calorim. 114 (2013) 731 (https://doi.org/10.1007/s10973-012-2935-9)

A. A. A. Ahmed, Z. A. Talib, M. Z. Bin Hussein, Appl. Clay Sci. 56 (2012) 68 (https://doi.org/10.1016/j.clay.2011.11.024)

K. Morimoto, K. Tamura, N. Iyi, J. Ye, H. Yamada, J. Phys. Chem. Solids 72 (2011) 1037 (https://doi.org/10.1016/j.jpcs.2011.05.018)

L. Wu, B. Peng, Q. Li, Q. Wang, X. Yan, K. Li, Q. Lin, New J. Chem. 44 (2020) 5293 (https://doi.org/10.1039/D0NJ00278)

I. M. Ahmed, M. S. Gasser, Appl. Surf. Sci. 259 (2012) 650 (https://doi.org/10.1016/j.apsusc.2012.07.092)

R. A. B. Lima-Correa, C. S. Castro, A. S. Damasceno, J. M. Assaf, Renew. Energy 146 (2020) 1984 (https://doi.org/10.1016/j.renene.2019.08.047)

E.M. Seftel, R.G. Ciocarlan, B. Michielsen, V. Meynen, S. Mullens, P. Cool, Appl. Clay Sci. 165 (2018) 234 (https://doi.org/10.1016/j.clay.2018.08.018)

S. Kim, J. Fahel, P. Durand, E. André, C. Carteret, Eur. J. Inorg. Chem. (2017) 669 (https://doi.org/10.1002/ejic.201601213)

H. Zaghouane-Boudaiaf, M. Boutahala, L. Arab, Chem. Eng. J. 187 (2012) 142 (https://doi.org/10.1016/j.cej.2012.01.112)

C. Lei, X. Zhu, C. Zhu, B. Jiang, Y. Le, J. Yu, J. Hazard. Mater. 321 (2017) 801 (https://doi.org/10.1016/j.jhazmat.2016.09.070)

Z. Gao, K. Sasaki, X. Qiu, Langmuir 34 (2018) 5386 (https://doi.org/10.1021/acs.langmuir.8b00059)

K. L. Tan, B. H. Hameed, J. Taiwan Inst. Chem. Eng. 74 (2017) 25 (https://doi.org/10.1016/j.jtice.2017.01.024)

C. Peng, J. Dai, J. Yu, J. Yin, AIP Advances 5 (2015) 057138 (https://doi.org/10.1063/1.4921455)

Z.-M. Ni, S.-J. Xia, L.-G. Wang, F.-F. Xing, G.-X. Pan, J. Colloid Interface Sci. 316 (2007) 284 (https://doi.org/10.1016/j.jcis.2007.07.045)

Y. Guo, Z. Zhu,Y. Qiu, J. Zhao, Chem. Eng. J. 219 (2013) 69 (https://doi.org/10.1016/j.cej.2012.12.084).

Most read articles by the same author(s)