The influence of the coprecipitation synthesis methods on photodegradation efficiency of ZnFe based photocatalysts Scientific paper
Main Article Content
Abstract
Organic dye pollutants that are progressively used in modern chemical industries, emerged as a major source of water contamination. A promising eco-friendly and simple approach to water purification is the heterogeneous photocatalytic process that uses various metal oxide semiconductors in the presence of light, initiating the oxidation-reduction reactions resulting in dye degradation. The aim of this study was to investigate the influence of coprecipitation synthesis methods on photodegradation efficiency. The ZnFe based photocatalysts were synthesized using two different methods: low (LS) supersaturation and high (HS) supersaturation coprecipitation and thermally activated at 100, 300, 500 and 700 °C. Structural and textural characterisation were carried out and their efficiency in methylene blue photodegradation test reaction was studied. LS samples treated at 100 and 300 °C exhibited very low photodegradation efficiency (less than 10 %) when compared to HS samples treated at the same temperatures (75 and 85 %). The efficiency of LS 500 and LS 700 samples improved (67 and 75 %) with the increase in thermal treatment temperature and the photodegradation efficiency difference between LS and HS samples decreased. Such behaviour of LS and HS samples could be explained by structural and textural properties that originated from different synthesis methods.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Science Fund of the Republic of Serbia
Grant numbers 451-03-47/2023-01/200134 -
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-47/2023-01/ 200134
References
L. Mohapatra, K. M. Parida, Sep. Purif. Technol. 91 (2012) 73 (https://doi.org/10.1016/j.seppur.2011.10.028)
Z. Meng, M. Wu, Y. Yu, F. Meng, A. Liu, S. Komarneni, Q. Zhang, Appl. Clay Sci. 161 (2018) 1 (https://doi.org/10.1016/j.clay.2018.04.008)
R. Langbehn, C. Michels, H. Moreira Soares, Environ. Pollut. 275 (2021) 116603 (https://doi.org/10.1016/j.envpol.2021.116603)
I. A. Saleh, N. Zouari, M. A. Al-Ghouti, Environ. Technol. Innov. 19 (2020) 101026 (https://doi.org/10.1016/j.eti.2020.101026)
C. J. Ogugbue, T. Sawidis, Biotechnol. Res. Int. 2011 (2011) 967925 (https://doi.org/10.4061/2011/967925)
C. Srinivas, C. Nagamani, M. Gangadhar, M. Raja Sekhar, Asian J. Chem. 22 (2010) 5045 (https://asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=22_7_11)
S. Pandey, J. Y. Do, J. Kim, M. Kang, Int. J. Biol. Macromol. 143 (2020) 60 (https://doi.org/10.1016/j.ijbiomac.2019.12.002)
M. Hadnadjev-Kostic, T. Vulic, Dj. Karanovic, M. Milanovic, J. Serb. Chem. Soc. 87 (2022) 1011 (https://doi.org/10.2298/JSC220228034H)
B. G. Ankamwar, V. B. Kamble, J. I. Annsi, L. S. Sarma, C. M. Mahajan, J. Nanosci. Nanotechnol. 17 (2017) 1185 (https://doi.org/10.1166/jnn.2017.12579)
G. Zhao, L. Liu, C. Li, T. Zhang, T. Yan, J. Yu, X. Jiang, F. Jiao, J. Photochem. Photobiol., A 367 (2018) 302 (https://doi.org/10.1016/j.jphotochem.2018.08.048)
K. Abderrazek, F.S. Najoua, E. Srasra, Appl. Clay Sci. 119 (2016) 229 (https://doi.org/10.1016/j.clay.2015.10.014)
I. Ahmad, S.B. Khan, T. Kamal, A.M. Asiri, J. Mol. Liq 229 (2017) 429 (https://doi.org/10.1016/j.molliq.2016.12.061)
M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, D. Lončarević, J. Dostanić, S. Markov, D. Jovanović, J. Clean Prod. 164 (2017) 1 (https://doi.org/10.1016/j.jclepro.2017.06.091)
S. Sun, X. Yang, Y. Zhang, F. Zhang, J. Ding, J. Bao, C. Gao, Prog. Nat. Sci. Mater. 22 (2012) 639 (http://dx.doi.org/10.1016/j.pnsc.2012.11.008)
O. Govedarica, M. Aškrabic, M. Hadnadev-Kostic, T. Vulic, B. Lekic, V. Rajakovic-Ognjanovic, D. Zakic, Materials 15 (2022) 4919 (https://doi.org/10.3390/ma15144919)
B. Kim, D. Lee, G. Gwak, Y. Han, J. Oh, J. Solid State Chem. 269 (2019) 454 (https://doi.org/10.1016/j.jssc.2018.10.013)
M. Sánchez-Cantú, M.E. Hernández-Torres, A. Castillo-Navarro, E. Cadena-Torres, E. Rubio-Rosas, E., Gracia-Jiménez, J.M., Tzompantzi, F., Appl. Clay Sci. 135 (2017) 1 (https://doi.org/10.1016/j.clay.2016.08.028)
E.S. da Silva, V. Prevot, C. Forano, P. Wong-Wah-Chung, H.D. Burrows, M. Sarakha, Environ. Sci. Pollut. Res. 21 (2014) 11218 (https://doi.org/10.1007/s11356-014-2971-z)
S. B. Jaffri, K. S. Ahmad, Green Process Synth. 8 (2019) 172 (https://doi.org/10.1515/gps-2018-0058)
J. Gajendiran, V. Rajendran, Mater. Lett. 116 (2014) 311 (https://doi.org/10.1016/j.matlet.2013.11.063)
C. Han, M.Q. Yang, B. Weng, Y. Xu, Phys. Chem. Chem. Phys. 16 (2014) 16891 (https://doi.org/10.1039/c4cp02189d)
A. E. A. Yagoub, G. M. Al-Shammari, L. N. Al-Harbi, P. Subash-Babu, R. Elsayim, M. A. Mohammed, M. A. Yahya, Appl. Sci. 12 (2022) 11613 (https://doi.org/10.3390/app122211613)
M. Afkari, S. M. Masoudpanah, M. Hasheminiasari, S. Alamolhoda, Sci. Rep. 13 (2023) 6203 (https://doi.org/10.1038/s41598-023-33338-1)
M. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H. J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51 (2012) 7764 (https://doi.org/10.1021/ic300794j)
A. M. Tripathi, R. G. Nair, S. K. Samdarshi, Sol. Energy Mater. Sol. Cells 94 (2010) 2379 (https://doi.org/10.1016/j.solmat.2010.08.022)
Y. Shen, T. R. B. Foong, X. Hu, Appl. Catal., A 409–410 (2011) 87 (https://doi.org/10.1016/j.apcata.2011.09.033)
S. Kurajica, I. Minga, R. Blazic, K. Muzina, P. Tominac, Athens J. Sci. 5 (2018) 7 (https://doi.org/10.30958/ajs.5-1-1)
I. Raheb, M. S. Manlla, Heliyon 7 (2021) (https://doi.org/10.1016/j.heliyon.2021.e07427)
M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, Adv. Powder Technol. 25 (2014) 1624 (https://doi.org/10.1016/j.apt.2014.05.015)
D. Moustafa, R. Mahmoud, H. M. A. El Salam, N. Shehata, Appl. Nanosci. 11 (2021) 709 (https://doi.org/10.1007/s13204-020-01632-3)
M. Hadnadjev-Kostic, Dj. Karanovic, T. Vulic, J. Dostanić, D. Lončarević, Green Process. Synth. 12 (2023) 20228153 (https://doi.org/10.1515/gps-2022-8153)
X. Liu, F. Zhu, W. Wang, J. Lei, G. Yin, Int. J. Electrochem. Sci. 11 (2016) 9696 (https://doi.org/10.20964/2016.11.62)
Z. Wang, X. Jiang, M. Pan, Y. Shi, Minerals 10 (2020) 377 (https://doi.org/10.3390/min10040377)
A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, B. Coasne, Langmuir 30 (2014) 13266 (https://doi.org/10.1021/la5026679)
L. el Mersly, E. M. el Mouchtari, E. M. Moujahid, C. Forano, M. el Haddad, S. Briche, A. Alaoui Tahiri, S. Rafqah, J. Sci-Adv. Mater. Dev. 6 (2021) 118 (https://doi.org/10.1016/j.jsamd.2020.08.002).