Xylose dehydration to furfural using niobium doped δ-FeOOH as catalyst Scientific paper
Main Article Content
Abstract
The effect of modification of δ-FeOOH with niobium, applied to dehydration reaction of xylose, was evaluated by experimental and theoretical methods. The experimental data confirmed, namely the characteristic peaks in the X-ray diffractometer analysis, that the materials were obtained. Inductively coupled plasma mass spectrometry analysis defined the percentage of Nb as 0 for pure δ-FeOOH and 9.5 wt. % (δ-FeOOH/Nb) for doped. In relation to obtaining furfural, the doped material presents a conversion improvement of 290 % when compared to pure catalyst. Theoretical calculations were useful in understanding the preferential route of the mechanisms proposed by the obtained potential energy values. To understand the preferred routes, the most favorable position of xylose in relation to δ-FeOOH was initially calculated. From this, the conditions favoring furfural formation were calculated based on the routes of the proposed mechanisms and the energy values indicated that the furfural formation is more likely to happen on the doped material.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 409723/2018-5 -
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Grant numbers APQ-03226-18 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Finance Code 001
References
D. Kumar, B. Singh, J. Korstad, Renew. Sust. Energ. Rev. 73 (2017) 654 (https://doi.org/10.1016/j.rser.2017.01.022)
G. Toscano, G. Riva, E. Foppa Pedretti, D. Duca, Biomass Bioenergy 35 (2011) 3139 (https://doi.org/10.1016/j.biombioe.2011.04.010)
L. Kuznetsova, L. Zabodalova, N. Yakovchenko, M. Domoroshchenkova, Energy Procedia 95 (2016) 230 (https://doi.org/10.1016/j.egypro.2016.09.057)
T. Forster-Carneiro, M. D. Berni, I. L. Dorileo, M. A. Rostagno, Resour. Conserv. Recycl. 77 (2013) 78 (https://doi.org/10.1016/j.resconrec.2013.05.007)
P. L. de Hoyos-Martínez, X. Erdocia, F. Charrier-El Bouhtoury, R. Prado, J. Labidi, Waste Manage. 80 (2018) 40 (https://doi.org/10.1016/j.wasman.2018.08.051)
P. Kubelka, F. Munk, Zeitsch. Tech. Phys. 12 (1931) 593 (http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf)
G. Machado, S. Leon, F. Santos, R. Lourega, J. Dullius, M. Mollmann, P. Eichler, Nat. Resour. 07 (2016) 115 (http://dx.doi.org/10.4236/nr.2016.73012)
A. Chatterjee, X. HU, F. L. Y. Lam, Fuel 239 (2019) 726 (https://doi.org/10.1016/j.fuel.2018.10.138)
C. Garcia-Sancho, I. Agirrezabal-Telleria, M. B. Guemez, P. Maireles-Torres, Appl. Catal., B 152 (2014) 1 (https://doi.org/10.1016/j.apcatb.2014.01.013)
R. K. Pal, S. Pradhan, L. Narayanan, V. K. Yadavalli, Sensors Actuators, B 259 (2018) 498 (http://dx.doi.org/10.1016/j.snb.2017.12.082)
P. Chen, K. Xu, X. Li, Y. Guo, D. Zhou, J. Zhao, X. Wu, C. Wu, Y. Xie, Chem. Sci. 5 (2014) 2251 (https://doi.org/10.1039/C3SC53303D)
L. C. A. Oliveira, F. Zaera, I. Lee, D. Q. Lima, T. C. Ramalho, A. C. Silva, E. M. B. Fonseca, Appl. Catal., A 368 (2009) 17 (https://doi.org/10.1016/j.apcata.2009.08.001)
H. S. Oliveira, L. D. Almeida, V. A. A. De Freitas, F. C. C. Moura, P. P. Souza, L. C. A. Oliveira, Catal. Today 240 (2015) 176 (http://dx.doi.org/10.1016/j.cattod.2014.07.016)
A. L. D. Lima, D. C. Batalha, H. V. Fajardo, J. L. Rodrigues, M. C. Pereira, A. C. Silva, Catal. Today 344 (2020) 118 (https://doi.org/10.1016/j.cattod.2018.10.035)
L. V. C. Lima, M. Rodriguez, V. A. A. Freitas, T. E. Souza, A. E. H. Machado, A. O. T. Patrocínio, J. D. Fabris, L. C. A. Oliveira, M. C. Pereira, Appl. Catal., B 165 (2015) 579 (http://dx.doi.org/10.1016/j.apcatb.2014.10.066)
M. C. Pereira, E. M. Garcia, A. Cândido da Silva, E. Lorençon, J. D. Ardisson, E. Murad, J. D. Fabris, T. Matencio, T. de Castro Ramalho, M. V. J. Rocha, J. Mater. Chem. 21 (2011) 10280 (https://doi.org/10.1039/C1JM11736J)
Gaussian 16, revision C.01, Gaussian, Inc., Wallingford, CT, 2016 (https://gaussian.com/gaussian16/)
L. W. Chung, W. M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H. B. Li, L. Ding, K. Morokuma, Chem. Rev. 115 (2015) 5678 (https://doi.org/10.1021/cr5004419)
E. F. F. da Cunha, W. Sippl, T. de Castro Ramalho, O. A. Ceva Antunes, R. B. de Alencastro, M. G. Albuquerque, Eur. J. Med. Chem. 44 (2009) 4344 (10.1016/j.ejmech.2009.05.016)
T. Costa Martins, T. Ramalho, J. Figueroa-Villar, A. Flores, C. Pereira, Magn. Reson. Chem. 41 (2003) 983 (https://doi.org/10.1002/mrc.1299)
T. C. Ramalho, M. Bühl, Magn. Reson. Chem. 43 (2005) 139 (https://doi.org/10.1002/mrc.1514)
A. P. Guimarães, A. A. Oliveira, E. F. F. da Cunha, T. C. Ramalho, T. C. C. França, J. Biomol. Struct. Dyn. 28 (2011) 455 (https://doi.org/10.1080/07391102.2011.10508588)
T. C. C. França, P. G. Pascutti, T. C. Ramalho, J. D. Figueroa-Villar, Biophys. Chem. 115 (2005) 1 (https://doi.org/10.1016/j.bpc.2004.12.002)
L. E. Roy, P. J. Hay, R. L. Martin, J. Chem. Theory Comput. 4 (2008) 1029 (https://doi.org/10.1021/ct8000409)
T. Jian, L. F. Cheung, T.-T. Chen, G. V Lopez, W.-L. Li, L.-S. Wang, Int. J. Mass Spectrom. 434 (2018) 7 (https://doi.org/10.1016/j.ijms.2018.08.013)
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865)
L. C. T. Lacerda, M. S. Pires, I. S. S. Oliveira, T. C. Telles, A. A. de Castro, S. Corrêa, V. S. Vaiss, T. C. Ramalho, J. Mol. Model. 27 (2021) 249 (https://doi.org/10.1007/s00894-021-04864-4)
V. A. Drits, B. A. Sakharov, A. Manceau, Clay Miner. 28 (1993) 209 (https://doi.org/10.1180/claymin.1993.028.2.03)
P. E. Blöchl, Phys. Rev., B 50 (1994) 17953 (https://doi.org/10.1103/PhysRevB.50.17953)
I. Kumari, N. Kaur, S. Gupta, N. Goel, J. Mol. Model. 25 (2019) (10.1007/s00894-018-3899-x)
M. Casarin, D. Falcomer, A. Glisenti, M. M. Natile, F. Poli, A. Vittadini, Chem. Phys. Lett. 405 (2005) 459 (https://doi.org/10.1016/j.cplett.2005.02.076)
H. Rasmussen, H. Sørensen, A. Meyer, Carbohydr. Res., C 385 (2013) 45 (https://doi.org/10.1016/j.carres.2013.08.029)
R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley-VCH, Weinheim, 2003 (https://doi.org/10.1002/3527602097)
C. B. Koch, C. A. Oxborrow, S. Mørup, M. B. Madsen, A. J. Quinn, J. M. D. Coey, Phys. Chem. Miner. 22 (1995) 333 (https://doi.org/10.1007/BF00202774)
J. B. Lopes Martins, E. Longo, O. D. Rodríguez Salmon, V. A. A. Espinoza, C. A. Taft, Chem. Phys. Lett. 400 (2004) 481 (https://doi.org/10.1016/j.cplett.2004.10.150)
A. C. Silva, R. M. Cepera, M. C. Pereira, D. Q. Lima, J. D. Fabris, L. C. A. Oliveira, Appl. Catal., B 107 (2011) 237 (http://dx.doi.org/10.1016/j.apcatb.2011.07.017)
M. J. Antal, T. Leesomboon, W. S. Mok, G. N. Richards, Carbohydr. Res. 217 (1991) 71 (https://doi.org/10.1016/0008-6215(91)84118-X)
M. Pires, L. Lacerda, S. Corrêa, T. Silva, A. Castro, T. Ramalho, in Recent Advances in Complex Functional Materials, Springer, Berlin, 2017, pp. 409–425 (https://doi.org/10.1007/978-3-319-53898-3_16)
B. Pholjaroen, N. Li, Z. Wang, A. Wang, T. Zhang, J. Energy Chem. 22 (2013) 826 (https://doi.org/10.1016/S2095-4956(14)60260-6)
I. Agirrezabal-Telleria, C. García Sancho, P. Maireles-Torres, P. L. Arias, Chinese J. Catal. 34 (2013) 1402 (https://doi.org/10.1016/S1872-2067(12)60599-3)
J. B. Gabriel, V. Oliveira, T. E. De Souza, I. Padula, L. C. A. Oliveira, L. V. A. Gurgel, B. E. L. Baêta, A. C. Silva, ACS Omega 5 (2020) 21392 (https://doi.org/10.1021/acsomega.0c01547).