Co-pyrolysis of various plastic waste components as an environmentally sustainable source of alternative fuels

Main Article Content

Ivana Jovancicevic
https://orcid.org/0009-0008-5817-267X
Mališa Antic
Gordana Gajica
Jan Schwarzbauer
https://orcid.org/0000-0001-7307-9491

Abstract

In this study, pyrolysis and co-pyrolysis of commonly used plastic materials (poly(ethyleneterephthalate) – PET, high density polyethylene - HDPE, and polystyrene - PS) were conducted to analyse the chemical composition of the corresponding pyrolyzates. Different ratios of plastic materials were applied to obtain a composition of aliphatic and aromatic degradation products that closely resemble those of conventional fossil fuels. The systematic chemical variations can act as base for evaluating this approach as a sustainable source of alternative fuels. HDPE revealed an aliphatic composition of degradation products, while PS and PET produced only aromatic compounds. Quantitative analysis of the obtained pyrolyzates revealed a clear correlation of initial proportion with the resulting quantitative product composition. The generation of individual pyrolysis products revealed a high reproducibility. However, it became evident that the decomposition products of PS consistently emerged as the most prominent among all tested HDPE/PS mixtures. The ratio of HDPE : PS=1:3 revealed 96 % of the aromatic compounds as PS decomposition products. PET revealed a mostly oxygen containing structure of the products, contributing to 86 % of the HDPE : PS=1:3 mixture. These results gain insights into the potential of plastic waste as a sustainable source for alternative fuels and valuable chemicals.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Jovancicevic, M. Antic, G. Gajica, and J. Schwarzbauer, “Co-pyrolysis of various plastic waste components as an environmentally sustainable source of alternative fuels”, J. Serb. Chem. Soc., Apr. 2024.
Section
Analytical Chemistry

Funding data

References

https://www.eea.europa.eu/publications/many-eu-member-states/germany

L. Dai, N. Zhou, Y. Lv, Y. Cheng, R. Ruan, Y. Liu, K. Cobb, P. Chen, H. Lei, R. Ruan, Progr. Energy Combust. Sci.93 (2022) 101021 (https://doi.org/10.1016/j.pecs.2022.101021)

J. Scheirs, & W. Kaminsky, Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into Diesel and other fuels, Wiley Pol. Sci (2006). (ISBN: 0-470-02152-7)

M. Rehan, A.-S. Nizami, K. Shahzad, O. K. M. Ouda, I. M. I. Ismail, T. Almeelbi, T. Iqbal, A. Demirbaş, En. Source, Part A: Rec. Util. Env. Eff. 38 (2016) 2598. (https://doi.org/10.1080/15567036.2016.1153753)

D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, E. V. Antonakou, J Hazard Mater 149 (2007) 536–542 (https://doi.org/10.1016/j.jhazmat.2007.06.076)

P. Rutkowski, A. Kubacki, En. Con. Manag. 47(6) (2006) 716 (https://doi.org/10.1016/j.enconman.2005.05.017)

M. Brebu, S. Uçar, C. Vasile, J. Yanık, Fuel 89 (2010) 1911 (https://doi.org/10.1016/j.fuel.2010.01.029)

B. B. Uzoejinwa, X. He, S. Wang, A. E. Abomohra, Y. Hu, Q. Wang, En. Con. and Manag. 163 (2018) 468 (https://doi.org/10.1016/j.enconman.2018.02.004)

J. A. Onwudili, N. Insura, P. T. Williams, J. Anal. Appl. Pyrolysis 86(2) (2009) 293. (https://doi.org/10.1016/j.jaap.2009.07.008)

R. U. Henneberg, R. P. Nielsen, M. E. Simonsen, J. Anal. Appl. Pyrolysis, 173 (2023) 106037 (https://doi.org/10.1016/j.jaap.2023.106037)

E. A. Williams, P. T. Williams, J. Anal. Appl. Pyrolysis 40–41 (1997) 347 (https://doi.org/10.1016/s0165-2370(97)00048-x)

E. Dziwiński, J. Iłowska, J. Gniady, Pol. Test. 65 (2018) 111 (https://doi.org/10.1016/j.polymertesting.2017.11.009)

J. Choi, F. Jitsunari, F. Asakawa, D. S. Lee, Food Addit. Contam. 22(7) (2005) 693 (https://doi.org/10.1080/02652030500160050)

R. Pfaendner, Pol. Deg. Stab. 91(9) (2006) 2249 (https://doi.org/10.1016/j.polymdegradstab.2005.10.017)

S. Al-Malaika, F. H. Axtell, R. Rothon, & M. Gilbert, Additives for plastics, in Brydson's Plastics Materials, VIII Edition, ed. M. Gilbert, 2017, pp. 127 (https://doi.org/10.1016/b978-0-323-35824-8.00007-4)

X. Ren, R. Chang, Y. Huang, A. A. Amato, C. Carivenc, M. Grimaldi, Y. Kuo, P. Balaguer, W. Bourguet, B. Blumberg, Endocrinology 164 (2023) 1-11 (https://doi.org/10.1210/endocr/bqad021)

C. Apel, J. Tang, R. Ebinghaus, Env. Poll. 235 (2018) 85 (https://doi.org/10.1016/j.envpol.2017.12.051)

Material Safety Data Sheet https://datasheets.scbt.com/sc-223762.pdf

Z. Wen, L. Fang, H. Zhang, Drug Deliv. 16(4) (2009) 214 (https://doi.org/10.1080/10717540902836715)

I. Y. R. Adamson, J. Weeks, Arch. Env. Health 27 (1973) 69 (https://doi.org/10.1080/00039896.1973.10666320)

C. A. Baldrich, Diesel characterization by high resolution mass spectrometry-gas chromatography, C.T.F Cienc. Tecnol. Futuro [online], vol. 1, n. 4, 1998, pp. 65. (ISSN 0122-5383)

S. C. Gad, Diesel fuel, in Encyclopedia of Toxicology, Elsevier eBooks, 2005, pp. 19 (https://doi.org/10.1016/b0-12-369400-0/00320-3)

M. Huth & A. Heilos, Fuel flexibility in gas turbine systems: impact on burner design and performance, in Modern Gas Turbine Systems, ed. P. Jansohn, Woodhead Publishing Ltd. 2013, pp. 635 (https://doi.org/10.1533/9780857096067.3.635)

Diesel fuel and exhaust emissions, Geneva: World Health Organization, 1996. (Environmental health criteria, 171). ISBN 92-4-157171-3 (https://www.inchem.org/documents/ehc/ehc/ehc171.htm)

C. Zhou, A. Farooq, L. Yang, A. M. Mebel, Prog. Energy Combust. Sci. 90 (2022) 100983 (https://doi.org/10.1016/j.pecs.2021.100983)

V V. L. Mangesh, S. Padmanabhan, P. Tamizhdurai, S. S. Narayanan, R. Arumugam, J. Hazard. Mater. 386 (2020) 121453 (https://doi.org/10.1016/j.jhazmat.2019.121453)

A. Çakıcı, J. Yanık, S. Uçar, T. Karayıldırım, H. Anıl, J. Mater. Cycles Waste Manag. 6 (2004) 20. (https://doi.org/10.1007/s10163-003-0101-y)

A A. R. Ardiyanti, С. А. Хромова, R. H. Venderbosch, V. А. Yakovlev, H. J. Heeres, Appl. Catal. B Environ. 117–118 (2012) 105–117 (https://doi.org/10.1016/j.apcatb.2011.12.032)

I. Hita, A. Gutiérrez, M. Olazar, J. Bilbao, J. M. Arandes, P. Castaño, Fuel 145 (2015) 158 (https://doi.org/10.1016/j.fuel.2014.12.055)

CONCAWE Review 11(2) (2002) 10 *(https://www.concawe.eu/wp-content/uploads/cr112-aromatics-2003-01897-01-e.pdf)

M. J. DeWitt, E. Corporan, J. Graham, D. K. Minus, Energ. Fuels 22 (2008) 2411 (https://doi.org/10.1021/ef8001179)

S. Sharma, P. Singh, C. Bhardwaj, B. Khandelwal, S. Kumar, Energ. Fuels 35 (2021) 3150 (https://doi.org/10.1021/acs.energyfuels.0c03511)

E. B. Strel’nikova, I. V. Goncharov, О. В. Серебренникова, Pet. Chem. 52 (2012) 278 (https://doi.org/10.1134/S096554411204010X)

A. G. A. Jameel, Y. Han, O. Brignoli, S. Telalović, A. M. Elbaz, H. G. Im, W. L. Roberts, J. Anal. Appl. Pyrolysis 127 (2017) 183 (https://doi.org/10.1016/j.jaap.2017.08.008)

M. Z. H. Khan, M. Sultana, Md. R. Al-Mamun, Md. R. Hasan, J. Env. Pub. Health, 2016 (2016) 7869080 (https://doi.org/10.1155/2016/7869080)

Wilke, S. (n.d.). Kunststoffabfälle. Umweltbundesamt. https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/kunststoffabfaelle#kunststoffvielfalt.

Most read articles by the same author(s)