Anticorrosion action of the olive leaf compounds extracted under optimal parameters as determined with experimental design Scientific paper
Main Article Content
Abstract
In this study, an agricultural waste product was used to prepare a green corrosion inhibitor based on olive leaves (Olea europaea var. syslvestris). Firstly, an optimization study of antioxidant activity of O. europaea leaves monitored by the DPPH free radical trapping method, was carried out using full factorial design. In the second step, the extract obtained under optimal conditions was tested as a green corrosion inhibitor for steel in 0.5 mol dm-3 HCl, using gravimetric and electrochemical methods. The results obtained by various techniques showed that the extract acted as a mixed-type inhibitor. The adsorption of the inhibitor was spontaneous (ΔGads = −12.443 kJ mol-1), through the mechanism of physical adsorption, and it obeyed the Langmuir adsorption isotherm. The highest corrosion inhibition efficiency of 92 % was obtained for 2.8 10-3 g cm-3of inhibitor, as measured by gravimetric method.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
D. Bouknana, B. Hammouti, H. Serghini Caid, S. Jodeh, A. Bouyanzer, A. Aouniti, I. Warad, Int. J. Ind. Chem.6 (2015) 233 (http://dx.doi.org/10.1007/s40090-015-0042-z)
A. Y. El-Etre, M. Abdallah, Z. E. El-Tantawy, Corros. Sci. 47 (2005) 385 (http://dx.doi.org/10.1016/j.corsci.2004.06.006)
A. Zaabar, R. Aitout, D. Amoura, R. Maizia, L. Makhloufi, B. Saidani, Miner. Eng. 142 (2019) 105 (http://dx.doi.org/10.1016/j.jcrusgro.2013.09.048)
A. Zaabar, R. Aitout, L. Makhloufi, K. Alilat, S. Maziz, B. Saidani, Hydrometallurgy 136 (2013) 58 (http://dx.doi.org/10.1016/j.hydromet.2013.03.004)
G. Salinas-Solano, J. Porcayo-Calderon, A. K. Larios-Galvez, J. G. Gonzalez-Rodriguez, J. Electrochem. Sci. Eng. 12 (2022) 373 (https://doi.org/10.5599/jese.1017)
S. E. Adeniji, B. A. Akindehinde, J. Electrochem. Sci. Eng. 8 (2018) 219 (https://doi.org/10.5599/jese.486)
J. Tabera, A. Guinda, A. Ruiz-Rodriguez, F. J. Senorans and E. Ibanez, J. Agr. Food. Chem. 52 (2004) 4774 (http://dx.doi.org/10.1021/jf049881+)
R. Briante, M. Patumi, S. Terenziani, E. Bismuto, F. Febbraio, J. Agr. Food. Chem. 50 (2002) 4934 (http://dx.doi.org/10.1021/jf025540p)
A. Zaabar, R. Aitout, L. Makhloufi, K. Belhamel, B. Saidani, Pigment Resin Technol. 43 (2014) 127 (http://dx.doi.org/10.1108/PRT-11-2012-0078)
W. Brand-Williams, M. E. Cuvelier, C. Berset, Lwt-Food. Sci. Technol. 28 (1995) 25 (http://dx.doi.org/10.1016/S0023-6438(95)80008-5)
Y. Carmona-Jiménez, M. V. García-Moreno, J. M. Igartuburu, C. G. Barroso, Food Chem. 165 (2014) 198 (http://dx.doi.org/10.1016/j.foodchem.2014.05.106)
A. A. Rahim, E. Rocca, J. M. Steinmetz, J. Kassim, R. Adnan, M. S. Ibrahim, Corros. Sci. 49 (2007) 402 (http://dx.doi.org/10.1016/j.corsci.2006.04.013)
N. A. Negm, N. G. Kandile, A. E. Badr, M. A. Mohammed, Corros. Sci. 65 (2012) 94 (http://dx.doi.org/10.1016/j.corsci.2012.08.002)
A. Y. El-Etre, J. Colloid Interface Sci. 314 (2007) 578 (http://dx.doi.org/10.1016/j.jcis.2007.05.077)
M. Keramatinia, B. Ramezanzadeh, M. Mahdavian, J. Taiwan Inst. Chem. Eng. 105 (2019) 134 (http://dx.doi.org/10.1016/j.jtice.2019.10.005)
N. Soltani, N. Tavakkoli, M. Khayatkashani, M. R. Jalali, A. Mosavizade, Corros. Sci. 62 (2012) 122 (http://dx.doi.org/10.1016/j.corsci.2012.05.003)
J. N. Asegbeloyin, P. M. Ejikeme, L. O. Olasunkanmi, A. S. Adekunle, E. E. Ebenso, Materials 8 (2015) 2918 (http://dx.doi.org/10.3390/ma8062918)
A. M. Al-Turkustani, S. T. Arab, L. S. S. Al-Qarni, J. Saudi Chem. Soc. 15 (2011) 73 (http://dx.doi.org/10.1016/j.jscs.2010.10.008)
M. A. Bidia, M. Azadia, M. Rassouli, Mater. Today Commun. 24 (2020) 100996 (http://dx.doi.org/10.1016/j.mtcomm.2020.100996)
R. Farahatia, S. M. Mousavi-Khoshdela, Prog. Org. Coat. 142 (2020) 105567 (http://dx.doi.org/10.1016/j.porgcoat.2020.105567)
Z. Bajić, D. Pamučar, J. Bogdanov, M. Bučko, Z. Veličković, Milit. Tech. Courier 67 (2019) 735 (http://dx.doi.org/10.5937/vojtehg67-21519)
A. Fateh, M. Aliofkhazraei, A. R. Rezvanian, Arab. J. Chem. 13 (2020) 481 (http://dx.doi.org/10.1016/j.arabjc.2017.05.021)
N.K. Gupta, C. Verma, R. Salghi, H. Lgaz, A. K. Mukherjee, M. A. Quraishi, New J. Chem. 41 (2017) 13114 (http://dx.doi.org/10.1039/C7NJ01431G)
A. K. Singh, M. A. Quraishi, Corros. Sci. 53 (2011) 1288 (http://dx.doi.org/10.1016/j.corsci.2011.01.002)
E. de B. Policarpi, A. Spinelli, J. Taiwan. Inst. Chem. Eng. 116 (2020) 215 (http://dx.doi.org/10.1016/j.jtice.2020.10.024)
T. Rabizadeh, S. K. Asl, J. Mol. Liq. 276 (2019) 694 (http://dx.doi.org/10.1016/j.molliq.2018.11.162)
H. Ashassi-Sorkhabi, E. Asghari, Electrochim. Acta 54 (2008) 162 (http://dx.doi.org/10.1016/j.electacta.2008.08.024)
F. E. Abeng, V. Anadebe, P. Y. Nkom, K. J. Uwakwe, E. G. Kamalu, J. Electrochem. Sci. Eng. 11 (2022) 11 (https://doi.org/10.5599/jese.1017)
M. A. Chidiebere, E. E. Oguzie, L. Liu, Y. Li, F. Wang, J. Ind. Eng. Chem. 26 (2015) 182 (http://dx.doi.org/10.1016/j.jiec.2014.11.029)
I. Danaee, P. Nikparsa, M. R. Khosravi-Nikou, H. Eskandari, S. Nikmanesh, Prot. Met. Phys. Chem. Surf. 55 (2019) 1001 (http://dx.doi.org/10.1134/S2070205119050289)
A. Sedik, D. Lerari, A. Salci, S. Athmani, K. Bachari, I.H. Gecibesler, R. Solmaz, J. Taiwan Inst. Chem. Eng. 107 (2020) 189 (http://dx.doi.org/10.1016/j.jtice.2019.12.006)
P. Mourya, S. Banerjee, M. M. Singh, Corros. Sci. 85 (2014) 352 (http://dx.doi.org/10.1016/j.corsci.2014.04.036)
H. Zarrok, A. Zarrouk, B. Hammouti, R. Salghi, C. Jama, F. Bentiss, Corros. Sci. 64 (2012) 243 (http://dx.doi.org/10.1016/j.corsci.2012.07.018).