The importance of using hydrogen evolution inhibitor during the Zn and Zn-Mn electrodeposition from ethaline

Mihael Bučko, Milorad V Tomić, Miodrag Maksimović, Jelena B. Bajat

Abstract


Cyclic voltammetry was used for characterization of zinc electro­deposition on steel from ethaline deep eutectic solution (1: 2 choline chloride: ethylene glycol). The influence of 4-hydroxy-benzaldehyde (HBA) as an additive was analyzed. It was shown that hydrogen evolution is inhibited in the presence of HBA and further significantly retarded upon addition of Zn2+ to the solution containing HBA. The cathodic peak for Zn2+ reduction in this type of ionic liquid (ethaline+HBA+Zn2+) resembles the zinc reduction in aqueous solution. The corrosion resistance of Zn coatings deposited at different current densities was evaluated by electrochemical methods: polarization measurements and electro­chemical impedance spectroscopy in 3 % NaCl solution. The possibility of Zn-Mn alloy deposition from ethaline deep eutectic solvent has been investigated for the first time. In addition, the corrosion stability of these alloy coatings was analyzed and compared to stability of bare Zn coatings. It was shown that the optimum deposition current density for both Zn and Zn-Mn coatings with increased corrosion stability from ethaline + HBA electrolyte, is 5 mA cm˗2.


Keywords


deep eutectic solvents; electrodeposition; hydrogen evolution; coatings; corrosion

Full Text:

PDF (1,388 kB)

References


E. L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060 (https://doi.org/10.1021/cr300162p)

R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili L. Magagnin, Electrodeposition from Deep Eutectic Solvents, in Progress and Developments in Ionic Liquids, Ed. by S. Handy, IntechOpen, 2017 (http://dx.doi.org/10.5772/64935)

M. Bučko, U. Lačnjevac, J.B. Bajat, J. Serb. Chem. Soc. 78 (2013) 1569 (https://doi.org/10.2298/JSC130118025B)

M. Bučko, D. Culliton, A.J. Betts, J.B. Bajat, T. I. Met. Finish. 95 (2017) 60 (http://dx.doi.org/10.1080/00202967.2017.1255412)

D. Sylla, C. Savall, M. Gadouleau, C. Rebere, J. Creus, Ph. Refait, Surf. Coat. Technol. 200 (2005) 2137 (https://doi.org/10.1016/j.surfcoat.2004.11.020)

P. P. Chung, P. A. Cantwell, G. D.Wilcox, G. W. Critchlow, T. I. Met. Finish 86 (2008) 211 (https://doi.org/10.1179/174591908X327572)

S. Fashu, C. Gu, J. Zhang, H. Zheng, X. Wang, J. Tu, J. Mater. Eng. Perform. 24 (2015) 434 (https://doi.org/10.1007/s11665-014-1248-5)

8J. Aldana-González, A. Sampayo-Garrido, M. G. Montes de Oca-Yemha, W. Sánchez, M. T. Ramírez-Silva, E. M. Arce-Estrada, M. Romero-Romo, M. Palomar-Pardavé, J. Electrochem. Soc. 166 (2019) D199 (https://doi.org/10.1149/2.0761906jes)

N. M. Pereira, S. Salome, C. M. Pereira, A. Fernando Silva, J. Appl. Electrochem. 42 (2012) 561 (https://doi.org/10.1007/s10800-012-0431-3)

N.M. Pereira, C.M. Pereira, J.P. Araújo, A. Fernando Silva, J. Electrochem. Soc. 162 (2015) D325 (https://doi.org/10.1149/2.0161508jes)

L. Harris, J. Electrochem. Soc. 120 (1973) 1034 (https://doi.org/10.1149/1.2403622)

M. Bučko, S. Roy, P. Valverde-Armas, A. Onjia, A. C. Bastos, J. B. Bajat, J. Electrochem. Soc. 165 (2018) H1059 (https://doi.org/10.1149/2.0921816jes)

K. Haerens, E. Matthijs, K. Binnemans, B. Van der Bruggen, Green Chem. 11 (2009) 1357 (https://doi.org/10.1039/B906318H)

M. E. Tawfik, F .J. Diez, Electrochim. Acta 146 (2014) 792 (http://dx.doi.org/10.1016/j.electacta.2014.08.147)

S. H. Lee, J. C. Rasaiah, J. Chem. Phys. 135 (2011) 124505 (http://dx.doi.org/10.1063/1.3632990)

A. P. Abbott, S. S. Alabdullah, A. Y. Al-Murshedi, K. S. Ryder, Faraday Discuss. 206 (2018) 365 (https://doi.org/10.1039/C7FD00153C)

C. D’Agostino, L. F. Gladden, M. D. Mantle, A. P. Abbott, E. I. Ahmed, A. Y. Al-Murshedi, R. C. Harris, Phys. Chem. Chem. Phys. 17 (2015) 15297 (https://doi.org/10.1039/C5CP01493J)

P. Vanysek, Ionic conductivity and diffusion at infinite dilution, in Handbook of Chemistry and Physics, CRC Press, 1992/93 ed

L. Vieira, R. Schennach, B. Gollas, Electrochim. Acta 197 (2016) 344 (http://dx.doi.org/10.1016/j.electacta.2015.11.030)

L. Vieira, A. H. Whitehead, B. Gollas, J. Electrochem. Soc. 161 (2014) D7 (http://dx.doi.org/10.1149/2.016401jes)

A. P. Abbott, J. C. Barron, G. Frisch, S. Gurman, K. S. Ryder, A. Fernando Silva, Phys. Chem. Chem. Phys. 13 (2011) 10224 (https://doi.org/10.1039/C0CP02244F)

Y. Lin, I. Sun, Electrochim. Acta 44 (1999) 2771

L. L. Shreir, R. A. Jarman, G. T. Burstein (Eds.), Corrosion, third ed., Butterworth-Heinemann, Oxford, 2000 (https://doi.org/10.1002/maco.19950460611)

R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcell Dekker, Inc., 2002 (https://doi.org/10.1002/maco.200690031)

S. T. Vagge, V. S. Raja, R. G Narayanan, Appl. Surf. Sci. 253 (2007) 8415 (http://dx.doi.org/10.1016/j.apsusc.2007.04.045)

X. G. Zhang, Corrosion and Electrochemistry of Zinc, Plenum Press, New York, 1996 (http://dx.doi.org/10.1007/978-1-4757-9877-7)

M. M. Abou-Krisha, H. M. Rageh, E. A. Matter, Surf. Coat. Technol. 202 (2008) 3739 (http://dx.doi.org/10.1016/j.surfcoat.2008.01.015).




DOI: https://doi.org/10.2298/JSC190718084B

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)