The importance of using hydrogen evolution inhibitor during the Zn and Zn–Mn electrodeposition from ethaline

Main Article Content

Mihael Bučko
Milorad V. Tomić
Miodrag Maksimović
Jelena B. Bajat
https://orcid.org/0000-0003-0742-8176

Abstract

Cyclic voltammetry was used for the characterization of zinc electro­deposition on steel from ethaline deep eutectic solution (1:2 choline chlo­ride:ethylene glycol). The influence of 4-hydroxy-benzaldehyde (HBA) as an additive was analyzed. It was shown that hydrogen evolution is inhibited in the presence of HBA and further significantly retarded upon addition of Zn2+ to the solution containing HBA. The cathodic peak for Zn2+ reduction in this type of ionic liquid (ethaline+HBA+Zn2+) resembles the zinc reduction in aqueous solution. The corrosion resistance of Zn coatings deposited at different current densities was evaluated by electrochemical methods, i.e., polarization measure­ments and electrochemical impedance spectroscopy in 3 % NaCl solution. The possibility of Zn–Mn alloy deposition from ethaline deep eutectic solvent was investigated for the first time. In addition, the corrosion stability of these alloy coatings was analyzed and compared to the stability of bare Zn coatings. It was shown that the optimum deposition current density for both Zn and Zn–Mn coatings with increased corrosion stability from ethaline + HBA electrolyte is 5 mA cm˗2.

Article Details

How to Cite
[1]
M. Bučko, M. V. Tomić, M. Maksimović, and J. B. Bajat, “The importance of using hydrogen evolution inhibitor during the Zn and Zn–Mn electrodeposition from ethaline”, J. Serb. Chem. Soc., vol. 84, no. 11, pp. 1221-1234, Dec. 2019.
Section
In Memoriam Issue Devoted to Prof. Konstantin Popov

References

E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 114 (2014) 11060 (https://doi.org/10.1021/cr300162p)

R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili, L. Magagnin, Electrodeposition from Deep Eutectic Solvents, in Progress and Developments in Ionic Liquids, S. Handy, Ed., IntechOpen, Rijeka, 2017 (http://dx.doi.org/10.5772/64935)

M. Bučko, U. Lačnjevac, J. B. Bajat, J. Serb. Chem. Soc. 78 (2013) 1569 (https://doi.org/10.2298/JSC130118025B)

M. Bučko, D. Culliton, A. J. Betts, J. B. Bajat, T. I. Met. Finish. 95 (2017) 60 (http://dx.doi.org/10.1080/00202967.2017.1255412)

D. Sylla, C. Savall, M. Gadouleau, C. Rebere, J. Creus, Ph. Refait, Surf. Coat. Technol. 200 (2005) 2137 (https://doi.org/10.1016/j.surfcoat.2004.11.020)

P. P. Chung, P. A. Cantwell, G. D.Wilcox, G. W. Critchlow, T. I. Met. Finish 86 (2008) 211 (https://doi.org/10.1179/174591908X327572)

S. Fashu, C. Gu, J. Zhang, H. Zheng, X. Wang, J. Tu, J. Mater. Eng. Perform. 24 (2015) 434 (https://doi.org/10.1007/s11665-014-1248-5)

J. Aldana-González, A. Sampayo-Garrido, M. G. Montes de Oca-Yemha, W. Sánchez, M. T. Ramírez-Silva, E. M. Arce-Estrada, M. Romero-Romo, M. Palomar-Pardavé, J. Electrochem. Soc. 166 (2019) D199 (https://doi.org/10.1149/2.0761906jes)

N. M. Pereira, S. Salome, C. M. Pereira, A. Fernando Silva, J. Appl. Electrochem. 42 (2012) 561 (https://doi.org/10.1007/s10800-012-0431-3)

N. M. Pereira, C. M. Pereira, J. P. Araújo, A. Fernando Silva, J. Electrochem. Soc. 162 (2015) D325 (https://doi.org/10.1149/2.0161508jes)

L. Harris, J. Electrochem. Soc. 120 (1973) 1034 (https://doi.org/10.1149/1.2403622)

M. Bučko, S. Roy, P. Valverde-Armas, A. Onjia, A. C. Bastos, J. B. Bajat, J. Electrochem. Soc. 165 (2018) H1059 (https://doi.org/10.1149/2.0921816jes)

K. Haerens, E. Matthijs, K. Binnemans, B. Van der Bruggen, Green Chem. 11 (2009) 1357 (https://doi.org/10.1039/B906318H)

M. E. Tawfik, F. J. Diez, Electrochim. Acta 146 (2014) 792 (http://dx.doi.org/10.1016/j.electacta.2014.08.147)

S. H. Lee, J. C. Rasaiah, J. Chem. Phys. 135 (2011) 124505 (http://dx.doi.org/10.1063/1.3632990)

A. P. Abbott, S. S. Alabdullah, A. Y. Al-Murshedi, K. S. Ryder, Faraday Discuss. 206 (2018) 365 (https://doi.org/10.1039/C7FD00153C)

C. D’Agostino, L. F. Gladden, M. D. Mantle, A. P. Abbott, E. I. Ahmed, A. Y. Al-Murshedi, R. C. Harris, Phys. Chem. Chem. Phys. 17 (2015) 15297 (https://doi.org/10.1039/C5CP01493J)

P. Vanysek, Ionic conductivity and diffusion at infinite dilution, in Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1992/93

L. Vieira, R. Schennach, B. Gollas, Electrochim. Acta 197 (2016) 344 (http://dx.doi.org/10.1016/j.electacta.2015.11.030)

L. Vieira, A. H. Whitehead, B. Gollas, J. Electrochem. Soc. 161 (2014) D7 (http://dx.doi.org/10.1149/2.016401jes)

A. P. Abbott, J. C. Barron, G. Frisch, S. Gurman, K. S. Ryder, A. Fernando Silva, Phys. Chem. Chem. Phys. 13 (2011) 10224 (https://doi.org/10.1039/C0CP02244F)

Y. Lin, I. Sun, Electrochim. Acta 44 (1999) 2771

L. L. Shreir, R. A. Jarman, G. T. Burstein, Eds., Corrosion, 3rd ed., Butterworth-Heine¬mann, Oxford, 2000 (https://doi.org/10.1002/maco.19950460611)

R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit, in Corrosion Science and Engineering, Marcell Dekker, Inc., New York, 2002 (https://doi.org/10.1002/maco.200690031)

S. T. Vagge, V. S. Raja, R. G Narayanan, Appl. Surf. Sci. 253 (2007) 8415 (http://dx.doi.org/10.1016/j.apsusc.2007.04.045)

X. G. Zhang, Corrosion and Electrochemistry of Zinc, Plenum Press, New York, 1996 (http://dx.doi.org/10.1007/978-1-4757-9877-7)

M. M. Abou-Krisha, H. M. Rageh, E. A. Matter, Surf. Coat. Technol. 202 (2008) 3739 (http://dx.doi.org/10.1016/j.surfcoat.2008.01.015).