Use of Jamun seed (Syzyum cumini) biochar for the removal of Fuchsin dye from aqueous solution Scientific paper

Main Article Content

Divya Kosale
https://orcid.org/0000-0003-2463-0499
Chandrakant Thakur
https://orcid.org/0000-0003-3233-098X
Vinod Kumar Singh
https://orcid.org/0000-0002-5872-3987

Abstract

The textile, leather, paint and other industries discharge lots of dyes in their effluent which can cause major impact to environment and human life. Therefore, it becomes necessary to eliminate the dye from the effluent before its discharge and reuse. Several procedures for the removal and inactivation of dyes have been proposed over past, but the adsorption has gained popularity due to its efficiency and operational ease. Use of the biochars as an adsorbent is gaining attention due to their low cost, availability and high adsorption cap­ability. The current study focuses on the removal of basic Fuchsin (BF) dye by adsorption using Jamun (Syzyum cumini) seed powder biochar as an adsorbent. The biochar was characterized through various analyses such as: XRD, EDS, FTIR, TGA and SEM. Adsorption was studied by varying the parameters such as pH, contact duration, temperature, adsorbent dose, and temperature. Further, the isotherm, kinetic and thermodynamic studies were also performed to under­stand the adsorption mechanism. The maximum adsorption capacity for BF dye was found with Jamun seed biochar produced at 500 °C. The study reveals that the biochar manufactured from Jamun seed power has a significant potential for the elimination of BF dye from wastewater.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Kosale, C. Thakur, and V. K. Singh, “Use of Jamun seed (Syzyum cumini) biochar for the removal of Fuchsin dye from aqueous solution: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 6, pp. 653–667, Jun. 2023.
Section
Environmental Chemistry

References

B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, J. C. Polonio, Biotechnol. Res. Innov. 3 (2019) 275 (https://doi.org/10.1016/j.biori.2019.09.001)

G. Mezohegyi, F. P. van der Zee, J. Font, A. Fortuny, A. Fabregat, J. Environ. Manage. 102 (2012) 148 (https://doi.org/10.1016/j.jenvman.2012.02.021)

S. Punathil, D. Ghime, T. Mohapatra, C. Thakur, P. Ghosh, J. Hazard. Toxic Radioact. Waste 24 (2020) 2 (https://doi.org/10.1061/(asce)hz.2153-5515.0000534)

V. Chandane, V. K. Singh, Desalin. Water Treat. 57 (2016) 4122 (https://doi.org/10.1080/19443994.2014.991758)

V. Kumar, A. Khapre, C. Thakur, P. Ghosh, P. K. Chaudhari, Int. J. Chem. React. Eng. (2021) (https://doi.org/10.1515/ijcre-2021-0175)

S. Barakan, V. Aghazadeh, Environ. Sci. Pollut. Res. 28 (2021) 2572 (https://doi.org/10.1007/s11356-020-10985-9)

P. K. Navin, S. Kumar, M. Mathur, Int. J. Eng. Res. Technol. 6 (2018) 1 (https://www.ijert.org/research/textile-wastewater-treatment-a-critical-review-IJERTCONV6IS11015.pdf)

M. Paredes-Laverde, M. Salamanca, J. D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R. A. Torres-Palma, J. Environ. Chem. Eng. 9 (2021) (https://doi.org/10.1016/j.jece.2021.105685)

K. Sarayu, S. Sandhya, Appl. Biochem. Biotechnol. 167 (2012) 645 (https://doi.org/10.1007/s12010-012-9716-6)

V. K. Gupta, A. Mittal, V. Gajbe, J. Mittal, J. Colloid Interface Sci. 319 (2008) 30 (https://doi.org/10.1016/j.jcis.2007.09.091)

M. El-Azazy, A. S. El-Shafie, A. Ashraf, A. A. Issa, Appl. Sci. 9 (2019) (https://doi.org/10.3390/app9224855)

M. El Haddad, J. Taibah Univ. Sci. 10 (2016) 664 (https://doi.org/10.1016/j.jtusci.2015.08.007)

J. Qin, F. Qiu, X. Rong, J. Yan, H. Zhao, D. Yang, Toxicol. Environ. Chem. 96 (2014) 849 (https://doi.org/10.1080/02772248.2014.993642)

Priya, B. S. Kaith, U. Shanker, B. Gupta, J. Environ. Manage. 234 (2019) 345 (https://doi.org/10.1016/j.jenvman.2018.12.117)

N. Chekwube, O. D. Onukwuli, Gazi Univ. J. Sci. 30 (2017) 86

X. Zhang, J. Huang, Z. Kang, D. P. Yang, R. Luque, Mol. Catal. 484 (2020) 110786 (https://doi.org/10.1016/j.mcat.2020.110786)

S. Kalita, M. Pathak, G. Devi, H. P. Sarma, K. G. Bhattacharyya, A. Sarma, A. Devi, RSC Adv. 7 (2017) 27248 (https://doi.org/10.1039/c7ra03014b)

A. Sagar, A. Dubey, Int.J. Chem. Studies 7 (2019) 590 (https://www.chemijournal.com/archives/2019/vol7issue3/PartK/7-2-227-854.pdf)

M. El Haddad, Integr. Med. Res. 10 (2018) 664 (https://doi.org/10.1016/j.jtusci.2015.08.007)

J. N. Nsami, J. K. Mbadcam, J. Chem. 2013 (2013) 469170 (https://doi.org/10.1155/2013/469170)

K. I. Aly, M. M. Sayed, M. G. Mohamed, S. W. Kuo, O. Younis, Micropor. Mesopor. Mater. 298 (2020) 110063 (https://doi.org/10.1016/j.micromeso.2020.110063)

M. Stylianou, A. Christou, P. Dalias, P. Polycarpou, C. Michael, A. Agapiou, P. Papanastasiou, D. Fatta-Kassinos, J. Energy Inst. 93 (2020) 2063 (https://doi.org/10.1016/j.joei.2020.05.002)

D. Özçimen, A. Ersoy-Meriçboyu, Renew. Energy 35 (2010) 1319 (https://doi.org/10.1016/j.renene.2009.11.042)

D. Zhang, T. Wang, J. Zhi, Q. Zheng, Q. Chen, C. Zhang, Y. Li, Materials (Basel) 13 (2020) 1 (https://doi.org/10.3390/ma13245594)

E. O. Oyelude, F. Frimpong, D. Dawson, J. Mater. Environ. Sci. 6 (2015) 1126 (https://www.jmaterenvironsci.com/Document/vol6/vol6_N4/132-JMES-1383-2015-Oyelude.pdf)

V. K. Singh, A. B. Soni, R. K. Singh, Orient. J. Chem. 32 (2016) 2621 (https://doi.org/10.13005/ojc/320534)

W. Bessashia, Y. Berredjem, Z. Hattab, M. Bououdina, Environ. Res. 186 (2020) 109484 (https://doi.org/10.1016/j.envres.2020.109484)

F. Mashkoor, A. Nasar, Inamuddin, A. M. Asiri, Sci. Rep. 8 (2018) 1 (https://doi.org/10.1038/s41598-018-26655-3)

T. A. Khan, E. A. Khan, Shahjahan, Appl. Clay Sci. 107 (2015) 70 (https://doi.org/10.1016/j.clay.2015.01.005)

R. Bhattacharyya, S. K. Ray, Polym. Eng. Sci. 53 (2013) 2439 (https://doi.org/10.1002/pen.23501)

N. Abdus-Salam, A. V. Ikudayisi-Ugbe, F. A. Ugbe, Chem. Data Collect. 31 (2021) 100626 (https://doi.org/10.1016/j.cdc.2020.100626)

L. Wang, J. Zhang, A. Wang, Colloids Surfaces, A 322 (2008) 47 (https://doi.org/10.1016/j.colsurfa.2008.02.019)

S. Parimal, M. Prasad, U. Bhaskar, Ind. Eng. Chem. Res. 49 (2010) 2882 (https://doi.org/10.1021/ie9013343)

K. Patidar, M. Vashishtha, J. Serbian Chem. Soc. 86 (2021) 429 (https://doi.org/10.2298/JSC201103010P)

A. A. Babaei, S. N. Alavi, M. Akbarifar, K. Ahmadi, A. Ramazanpour Esfahani, B. Kakavandi, Desalin. Water Treat. 57 (2016) 27199 (https://doi.org/10.1080/19443994.2016.1163736)

D. Tian, X. Zhang, C. Lu, G. Yuan, W. Zhang, Z. Zhou, Cellulose 21 (2014) 473 (https://doi.org/10.1007/s10570-013-0112-3)

B. Singh, U. Shanker, B. Gupta, J. Environ. Manage. 234 (2019) 345 (https://doi.org/10.1016/j.jenvman.2018.12.117)

Y. Guan, S. Wang, C. Sun, G. Yi, X. Wu, L. Chen, X. Ma, Chem. Pap. 73 (2019) 2655 (https://doi.org/10.1007/s11696-019-00817-7)

C. Wang, C. Feng, Y. Gao, X. Ma, Q. Wu, Z. Wang, Chem. Eng. J. 173 (2011) 92 (https://doi.org/10.1016/j.cej.2011.07.041).