Fixed bed adsorption treatment of effluent of battery recycling unit to remove Pb(II) using steam-activated granular carbon

Main Article Content

Saurabh Meshram
Chandrakant Thakur
Anupam B. Soni

Abstract

Batteryrecycling generates large amount of effluent which contains the toxic Pb(II) beyond the permissible limit. This effluent was treated for the removal of Pb(II) by fixed bed adsorption onto steam-activated granular carbon. Effect of flow rate, bed diameter and bed height on the performance of fixed bed column was investigated. The experimental data was presented in the form of breakthrough curve. Bed exhaustion time, breakthrough time and ads­orbent capacity were determined. The obtained experimental data were evalu­ated with the four kinetic models: Thomas, Yoon–Nelson, Adams–Bohart and Clark model. The data were fitted well to the Thomas, Yoon–Nelson and Clark model with correlation coefficient R2 > 0.96.

Downloads

Metrics

PDF views
213
Jul 22 '20Jul 25 '20Jul 28 '20Jul 31 '20Aug 01 '20Aug 04 '20Aug 07 '20Aug 10 '20Aug 13 '20Aug 16 '202.0
| |

Article Details

How to Cite
[1]
S. Meshram, C. Thakur, and A. B. Soni, “Fixed bed adsorption treatment of effluent of battery recycling unit to remove Pb(II) using steam-activated granular carbon”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 953–965, Jul. 2020.
Section
Chemical Engineering
Author Biographies

Chandrakant Thakur, Department of Chemical Engineering, National Institute of Technology Raipur, 492010, Chhattisgarh

Assistant Professor

Department of Chemical Engineering, National Institute of Technology Raipur, 492010, Chhattisgarh

Anupam B. Soni, Department of Chemical Engineering, National Institute of Technology Raipur, 492010, Chhattisgarh

Professor

Department of Chemical Engineering, National Institute of Technology Raipur, 492010, Chhattisgarh

References

Y. Gong, J. E. Dutrizac, T. T. Chen, Hydrometallurgy 28 (1992) 399 (https://doi.org/10.1016/0304-386X(92)90044-Z)

J. Zhang, C. Chen, X. Zhang, S. Liu, Procedia Environ. Sci. 31 (2016) 873 (https://doi.org/10.1016/j.proenv.2016.02.103)

W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, R.V. Kumar, Renew. Sustain. Energy Rev. 61(2016)108 (https://doi.org/10.1016/j.rser.2016.03.046)

R. Naseem, S. S. Tahir, Wat. Res. 35 (2001) 3982

M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Ranđelović, Desalination 276 (2011) 53 (https://doi.org/10.1016/j.desal.2011.03.013)

H. M. Albishri, H. M. Marwani, E. M. Soliman, Arab. J. Chem. 10 (2017) S1955 (http://dx.doi.org/10.1016/j.arabjc.2013.07.023)

G. Macchi, M. Pagano, M. Santori, G. Tiravanti, Wat. Res. 27 (1993) 1511 (https://doi.org/10.1016/0043-1354(93)90095-Y)

T. Bahadir, G. Bakan, L. Altas, H. Buyukgungor, Enz. Microb. Technol. 41 (2007) 98 (https://doi.org/10.1016/j.enzmictec.2006.12.007)

N. H. Yarkandi, Int. J. Curr. Microbiol. App. Sci. 3 (2014) 207

J. Haiyan, Z. Qiuxiang, Z. Ying, Desalin. Water Treat. (2015) 1 (https://doi.org/10.1080/19443994.2015.1006258)

V. K. Gupta, S. Agarwal, T. A. Saleh, J. Hazard. Mater. 185 (2011) 17 (https://doi.org/10.1016/j.jhazmat.2010.08.053)

A. R. Fajardo, L. C. Lopes, A. F. Rubira, E. C. Muniz, Chem. Eng. J. 183 (2012) 253 (http://dx.doi.org/10.1016/j.cej.2011.12.071)

V. C. Srivastava, I. D. Mall, I. M. Mishra, J. Hazard. Mater. 134 (2006) 257 (https://doi.org/10.1016/j.jhazmat.2005.11.052)

V. K. Gupta, I. Ali, J. Colloid Interface Sci. 271 (2004) 321 (https://doi.org/10.1016/j.jcis.2003.11.007)

R. Ayyappan, A. C. Sophia, K. Swaminathan, S. Sandhya, Proc. Biochem. 40 (2005) 1293 (https://doi.org/10.1016/j.procbio.2004.05.007)

R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, R. J. Portier, Bioresour. Technol. 89 (2003) 115 (https://doi.org/10.1016/S0960-8524(03)00064-6)

M. Basu, A. K. Guha, L. Ray, Bioresour. Technol. 283 (2019) 86 (https://doi.org/10.1016/j.biortech.2019.02.133)

J. Qu, T. Song, J. Liang, X. Bai, Y. Li, Y. Wei, S. Huang, L. Dong, Ecotoxicol. Environ. Saf. 169 (2019) 722 (https://doi.org/10.1016/j.ecoenv.2018.11.085)

S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Bioresour. Technol. 113 (2012) 114 (https://doi.org/10.1016/j.biortech.2011.11.110)

T. Zang, Z. Cheng, L. Lu, Y. Jin, X. Xu, W. Ding, J. Qu, Ecol. Eng. 99 (2017) 358 (https://doi.org/10.1016/j.ecoleng.2016.11.070)

G. Nazari, H. Abolghasemi, M. Esmaieli, E. S. Pouya, Appl. Surf. Sci. 375 (2016) 144 (https://doi.org/10.1016/j.apsusc.2016.03.096)

A. A. Ahmad, B. H. Hameed, J. Hazard. Mater. 175 (2010) 298 (https://doi.org/10.1016/j.jhazmat.2009.10.003)

R. Sharma, B. Singh, Bioresour. Technol. 146 (2013) 519 (https://doi.org/10.1016/j.biortech.2013.07.146)

A. Tor, N. Danaoglu, G. Arslan, Y. Cengeloglu, J. Hazard. Mater. 164 (2009) 271 (https://doi.org/10.1016/j.jhazmat.2008.08.011)

E. Malkoc, Y. Nuhoglu, M. Dundar, J. Hazard. Mater. 138 (2006) 142 (https://doi.org/10.1016/j.jhazmat.2006.05.051)

A. Abdolali, H. H. Ngo, W. Guo, J. L. Zhou, J. Zhang, S. Liang, S. W. Chang, D. D. Nguyen, Y. Liu, Bioresour. Technol. 229 (2017) 78 (https://doi.org/10.1016/j.biortech.2017.01.016)

P. Dhanasekaran, P. M. S. Sai, K. I. Gnanasekar, J. Fluor. Chem. 195 (2017) 37 (https://doi.org/10.1016/j.jfluchem.2017.01.003)

F. Fadzil, S. Ibrahim, M. A. K. M. Hanafiah, Process Saf. Environ. Prot. 100 (2016) 1 (https://doi.org/10.1016/j.psep.2015.12.001)

P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan, Chem. Eng. J. 228 (2013) 496 (https://doi.org/10.1016/j.cej.2013.04.118)

T. A. H. Nguyen, H. H. Ngo, W. S. Guo, T. Q. Pham, F. M. Li, T. V Nguyen, X. T. Bui, Sci. Total Environ. 523 (2015) 40 (https://doi.org/10.1016/j.scitotenv.2015.03.126)

M. T. Bai, P. Venkateswarlu, Mater. Today Proc. 5 (2018) 18024 (https://doi.org/10.1016/j.matpr.2018.06.136)

S. Chatterjee, S. Mondal, S. De, J. Clean. Prod. 177 (2018) 760 (https://doi.org/10.1016/j.jclepro.2017.12.249)

X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, Q. Li, Chem. Eng. J. 226 (2013) 1 (https://doi.org/10.1016/j.cej.2013.04.033)

S. T. Song, Y. F. Hau, N. Saman, K. Johari, S. C. Cheu, H. Kong, H. Mat, J. Environ. Chem.Eng. 4 (2016) 1685 (https://doi.org/10.1016/j.jece.2016.02.033)

M. Auta, B. H. Hameed, Chem. Eng. J. 237 (2014) 352 (https://doi.org/10.1016/j.cej.2013.09.066)

Z. Aksu, F. Gönen, Proc. Biochem. 39 (2004) 599 (https://doi.org/10.1016/S0032-9592(03)00132-8)

R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, DES 245 (2009) 284 (https://doi.org/10.1016/j.desal.2008.07.013)

V. C. Srivastava, B. Prasad, I. M. Mishra, I. D. Mall, M. M. Swamy, Ind. Eng. Chem. Res. 47 (2008) 1603 (https://doi.org/10.1021/ie0708475).

Similar Articles

You may also start an advanced similarity search for this article.