Fixed bed adsorption treatment of effluent of battery recycling unit to remove Pb(II) using steam-activated granular carbon
Main Article Content
Abstract
Batteryrecycling generates large amount of effluent which contains the toxic Pb(II) beyond the permissible limit. This effluent was treated for the removal of Pb(II) by fixed bed adsorption onto steam-activated granular carbon. Effect of flow rate, bed diameter and bed height on the performance of fixed bed column was investigated. The experimental data was presented in the form of breakthrough curve. Bed exhaustion time, breakthrough time and adsorbent capacity were determined. The obtained experimental data were evaluated with the four kinetic models: Thomas, Yoon–Nelson, Adams–Bohart and Clark model. The data were fitted well to the Thomas, Yoon–Nelson and Clark model with correlation coefficient R2 > 0.96.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Y. Gong, J. E. Dutrizac, T. T. Chen, Hydrometallurgy 28 (1992) 399 (https://doi.org/10.1016/0304-386X(92)90044-Z)
J. Zhang, C. Chen, X. Zhang, S. Liu, Procedia Environ. Sci. 31 (2016) 873 (https://doi.org/10.1016/j.proenv.2016.02.103)
W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, R.V. Kumar, Renew. Sustain. Energy Rev. 61(2016)108 (https://doi.org/10.1016/j.rser.2016.03.046)
R. Naseem, S. S. Tahir, Wat. Res. 35 (2001) 3982
M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Ranđelović, Desalination 276 (2011) 53 (https://doi.org/10.1016/j.desal.2011.03.013)
H. M. Albishri, H. M. Marwani, E. M. Soliman, Arab. J. Chem. 10 (2017) S1955 (http://dx.doi.org/10.1016/j.arabjc.2013.07.023)
G. Macchi, M. Pagano, M. Santori, G. Tiravanti, Wat. Res. 27 (1993) 1511 (https://doi.org/10.1016/0043-1354(93)90095-Y)
T. Bahadir, G. Bakan, L. Altas, H. Buyukgungor, Enz. Microb. Technol. 41 (2007) 98 (https://doi.org/10.1016/j.enzmictec.2006.12.007)
N. H. Yarkandi, Int. J. Curr. Microbiol. App. Sci. 3 (2014) 207
J. Haiyan, Z. Qiuxiang, Z. Ying, Desalin. Water Treat. (2015) 1 (https://doi.org/10.1080/19443994.2015.1006258)
V. K. Gupta, S. Agarwal, T. A. Saleh, J. Hazard. Mater. 185 (2011) 17 (https://doi.org/10.1016/j.jhazmat.2010.08.053)
A. R. Fajardo, L. C. Lopes, A. F. Rubira, E. C. Muniz, Chem. Eng. J. 183 (2012) 253 (http://dx.doi.org/10.1016/j.cej.2011.12.071)
V. C. Srivastava, I. D. Mall, I. M. Mishra, J. Hazard. Mater. 134 (2006) 257 (https://doi.org/10.1016/j.jhazmat.2005.11.052)
V. K. Gupta, I. Ali, J. Colloid Interface Sci. 271 (2004) 321 (https://doi.org/10.1016/j.jcis.2003.11.007)
R. Ayyappan, A. C. Sophia, K. Swaminathan, S. Sandhya, Proc. Biochem. 40 (2005) 1293 (https://doi.org/10.1016/j.procbio.2004.05.007)
R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, R. J. Portier, Bioresour. Technol. 89 (2003) 115 (https://doi.org/10.1016/S0960-8524(03)00064-6)
M. Basu, A. K. Guha, L. Ray, Bioresour. Technol. 283 (2019) 86 (https://doi.org/10.1016/j.biortech.2019.02.133)
J. Qu, T. Song, J. Liang, X. Bai, Y. Li, Y. Wei, S. Huang, L. Dong, Ecotoxicol. Environ. Saf. 169 (2019) 722 (https://doi.org/10.1016/j.ecoenv.2018.11.085)
S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Bioresour. Technol. 113 (2012) 114 (https://doi.org/10.1016/j.biortech.2011.11.110)
T. Zang, Z. Cheng, L. Lu, Y. Jin, X. Xu, W. Ding, J. Qu, Ecol. Eng. 99 (2017) 358 (https://doi.org/10.1016/j.ecoleng.2016.11.070)
G. Nazari, H. Abolghasemi, M. Esmaieli, E. S. Pouya, Appl. Surf. Sci. 375 (2016) 144 (https://doi.org/10.1016/j.apsusc.2016.03.096)
A. A. Ahmad, B. H. Hameed, J. Hazard. Mater. 175 (2010) 298 (https://doi.org/10.1016/j.jhazmat.2009.10.003)
R. Sharma, B. Singh, Bioresour. Technol. 146 (2013) 519 (https://doi.org/10.1016/j.biortech.2013.07.146)
A. Tor, N. Danaoglu, G. Arslan, Y. Cengeloglu, J. Hazard. Mater. 164 (2009) 271 (https://doi.org/10.1016/j.jhazmat.2008.08.011)
E. Malkoc, Y. Nuhoglu, M. Dundar, J. Hazard. Mater. 138 (2006) 142 (https://doi.org/10.1016/j.jhazmat.2006.05.051)
A. Abdolali, H. H. Ngo, W. Guo, J. L. Zhou, J. Zhang, S. Liang, S. W. Chang, D. D. Nguyen, Y. Liu, Bioresour. Technol. 229 (2017) 78 (https://doi.org/10.1016/j.biortech.2017.01.016)
P. Dhanasekaran, P. M. S. Sai, K. I. Gnanasekar, J. Fluor. Chem. 195 (2017) 37 (https://doi.org/10.1016/j.jfluchem.2017.01.003)
F. Fadzil, S. Ibrahim, M. A. K. M. Hanafiah, Process Saf. Environ. Prot. 100 (2016) 1 (https://doi.org/10.1016/j.psep.2015.12.001)
P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan, Chem. Eng. J. 228 (2013) 496 (https://doi.org/10.1016/j.cej.2013.04.118)
T. A. H. Nguyen, H. H. Ngo, W. S. Guo, T. Q. Pham, F. M. Li, T. V Nguyen, X. T. Bui, Sci. Total Environ. 523 (2015) 40 (https://doi.org/10.1016/j.scitotenv.2015.03.126)
M. T. Bai, P. Venkateswarlu, Mater. Today Proc. 5 (2018) 18024 (https://doi.org/10.1016/j.matpr.2018.06.136)
S. Chatterjee, S. Mondal, S. De, J. Clean. Prod. 177 (2018) 760 (https://doi.org/10.1016/j.jclepro.2017.12.249)
X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, Q. Li, Chem. Eng. J. 226 (2013) 1 (https://doi.org/10.1016/j.cej.2013.04.033)
S. T. Song, Y. F. Hau, N. Saman, K. Johari, S. C. Cheu, H. Kong, H. Mat, J. Environ. Chem.Eng. 4 (2016) 1685 (https://doi.org/10.1016/j.jece.2016.02.033)
M. Auta, B. H. Hameed, Chem. Eng. J. 237 (2014) 352 (https://doi.org/10.1016/j.cej.2013.09.066)
Z. Aksu, F. Gönen, Proc. Biochem. 39 (2004) 599 (https://doi.org/10.1016/S0032-9592(03)00132-8)
R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, DES 245 (2009) 284 (https://doi.org/10.1016/j.desal.2008.07.013)
V. C. Srivastava, B. Prasad, I. M. Mishra, I. D. Mall, M. M. Swamy, Ind. Eng. Chem. Res. 47 (2008) 1603 (https://doi.org/10.1021/ie0708475).