Fixed bed adsorption treatment of effluent of battery recycling unit to remove Pb(II) using steam activated granular activated carbon

Saurabh Meshram, Chandrakant Thakur, Anupam B. Soni

Abstract


Battery recycling generates large amount of effluent which contains the toxic Pb(II) beyond the permissible limit. This effluent was treated for the removal of Pb(II) by fixed bed adsorption onto steam activated granular activated carbon (SGAC). Effect of flow rate, bed diameter and bed height on the performance of fixed bed column was investigated. The experimental data was presented in the form of breakthrough curve. Bed exhaustion time, breakthrough time and adsorbent capacity were determined. Obtained experimental data were evaluated with the four kinetic models: Thomas, Yoon-Nelson, Adams-Bohart and Clark model. The data were fitted well to the Thomas, Yoon-Nelson and Clark model with correlation coefficient R> 0.96.


Keywords


Lead removal; breakthrough curve; kinetic models; lead-acid battery; continuous adsorption

Full Text:

PDF (1,262 kB)

References


Y. Gong, J. E. Dutrizac, T. T. Chen, Hydrometallurgy 28 (1992) 399-421 (https://doi.org/10.1016/0304-386X(92)90044-Z)

J. Zhang, C. Chen, X. Zhang, S. Liu, Procedia Environ. Sci. 31 (2016) 873–879 (https://doi.org/10.1016/j.proenv.2016.02.103)

W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, R.V. Kumar, Renewable and Sustainable Energy Reviews 61(2016)108–122 (https://doi.org/10.1016/j.rser.2016.03.046)

R. Naseem, S. S. Tahir, Wat. Res. 35 (2001) 3982–3986

M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Ranđelović, Desalination 276 (2011) 53–59 (https://doi.org/10.1016/j.desal.2011.03.013)

H. M. Albishri, H. M. Marwani, E. M. Soliman, Arabian Journal of Chemistry 10 (2017) S1955–S1962 (http://dx.doi.org/10.1016/j.arabjc.2013.07.023)

G. Macchi, M. Pagano, M. Santori, G. Tiravanti, Wat. Res., 27 (1993) 1511–1518 (https://doi.org/10.1016/0043-1354(93)90095-Y)

T. Bahadir, G. Bakan, L. Altas, H. Buyukgungor, Enzyme and Microbial Technology 41 (2007) 98–102 (https://doi.org/10.1016/j.enzmictec.2006.12.007)

N. H. Yarkandi, Int. J. Curr. Microbiol. App. Sci. 3 (2014) 207-228

J. Haiyan, Z. Qiuxiang, Z. Ying, Desalination and Water Treatment (2015) 1–11 (https://doi.org/10.1080/19443994.2015.1006258)

V. K. Gupta, S. Agarwal, T. A. Saleh, J. Hazard. Mater. 185 (2011) 17–23 (https://doi.org/10.1016/j.jhazmat.2010.08.053)

A. R. Fajardo, L. C. Lopes, A. F. Rubira, E. C. Muniz, Chem. Eng. J. 183 (2012) 253–260 (http://dx.doi.org/10.1016/j.cej.2011.12.071)

V. C. Srivastava, I. D. Mall, I. M. Mishra, J. Hazard. Mater. 134 (2006) 257–267. (https://doi.org/10.1016/j.jhazmat.2005.11.052)

V. K. Gupta, I. Ali, J. Colloid. Inter. Sci. 271 (2004) 321–328 (https://doi.org/10.1016/j.jcis.2003.11.007)

R. Ayyappan, A. C. Sophia, K. Swaminathan, S. Sandhya, Process Biochemistry 40 (2005) 1293–1299 (https://doi.org/10.1016/j.procbio.2004.05.007)

R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, R. J. Portier, Bioresour. Technol. 89 (2003) 115–119 (https://doi.org/10.1016/S0960-8524(03)00064-6)

M. Basu, A. K. Guha, L. Ray, Bioresour. Technol. 283 (2019) 86–95 (https://doi.org/10.1016/j.biortech.2019.02.133)

J. Qu, T. Song, J. Liang, X. Bai, Y. Li, Y. Wei, S. Huang, L. Dong, Ecotoxicol. Environ. Saf. 169 (2019) 722–729 (https://doi.org/10.1016/j.ecoenv.2018.11.085)

S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Bioresour. Technol. 113 (2012) 114–120 (https://doi.org/10.1016/j.biortech.2011.11.110)

T. Zang, Z. Cheng, L. Lu, Y. Jin, X. Xu, W. Ding, J. Qu, Ecological Engineering 99 (2017) 358–365 (https://doi.org/10.1016/j.ecoleng.2016.11.070)

G. Nazari, H. Abolghasemi, M. Esmaieli, E. S. Pouya, Appl. Surf. Sci. 375 (2016) 144–153 (https://doi.org/10.1016/j.apsusc.2016.03.096)

A. A. Ahmad, B. H. Hameed, J. Hazard. Mater. 175 (2010) 298–303 (https://doi.org/10.1016/j.jhazmat.2009.10.003)

R. Sharma, B. Singh, Bioresour. Technol. 146 (2013) 519–524 (https://doi.org/10.1016/j.biortech.2013.07.146)

A. Tor, N. Danaoglu, G. Arslan, Y. Cengeloglu, J. Hazard. Mater. 164 (2009) 271–278 (https://doi.org/10.1016/j.jhazmat.2008.08.011)

E. Malkoc, Y. Nuhoglu, M. Dundar, J. Hazard. Mater. 138 (2006) 142–151 (https://doi.org/10.1016/j.jhazmat.2006.05.051)

A. Abdolali, H. H. Ngo, W. Guo, J. L. Zhou, J. Zhang, S. Liang, S. W. Chang, D. D. Nguyen, Y. Liu, Bioresour. Technol. 229 (2017) 78–87 (https://doi.org/10.1016/j.biortech.2017.01.016)

P. Dhanasekaran, P. M. S. Sai, K. I. Gnanasekar, J. Fluor. Chem. 195 (2017) 37–46 (https://doi.org/10.1016/j.jfluchem.2017.01.003)

F. Fadzil, S. Ibrahim, M. A. K. M. Hanafiah, Process Saf. Environ. Prot. 100 (2016) 1-8 (https://doi.org/10.1016/j.psep.2015.12.001)

P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan, Chem. Eng. J. 228 (2013) 496–505 (https://doi.org/10.1016/j.cej.2013.04.118)

T. A. H. Nguyen, H. H. Ngo, W. S. Guo, T. Q. Pham, F. M. Li, T. V Nguyen, X. T. Bui, Science of the Total Environment 523 (2015) 40–49 (https://doi.org/10.1016/j.scitotenv.2015.03.126)

M. T. Bai, P. Venkateswarlu, Mater. Today Proc. 5 (2018) 18024–18037 (https://doi.org/10.1016/j.matpr.2018.06.136)

S. Chatterjee, S. Mondal, S. De, J. Clean. Prod. 177 (2018) 760–774 (https://doi.org/10.1016/j.jclepro.2017.12.249)

X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, Q. Li, Chem. Eng. J. 226 (2013) 1–6 (https://doi.org/10.1016/j.cej.2013.04.033)

S. T. Song, Y. F. Hau, N. Saman, K. Johari, S. C. Cheu, H. Kong, H. Mat, Journal of Environmental Chemical Engineering 4 (2016) 1685–1697 (https://doi.org/10.1016/j.jece.2016.02.033)

M. Auta, B. H. Hameed, Chem. Eng. J. 237 (2014) 352–361 (https://doi.org/10.1016/j.cej.2013.09.066)

Z. Aksu, F. Gönen, Process Biochemistry 39 (2004) 599–613 (https://doi.org/10.1016/S0032-9592(03)00132-8)

R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, DES 245 (2009) 284–297 (https://doi.org/10.1016/j.desal.2008.07.013)

V. C. Srivastava, B. Prasad, I. M. Mishra, I. D. Mall, M. M. Swamy, Ind. Eng. Chem. Res. 47 (2008) 1603–1613 (https://doi.org/10.1021/ie0708475).




DOI: https://doi.org/10.2298/JSC191103015M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)