Adsorption of tannase from Aspergillus ficuum to carboxyl-functionalized multi-walled carbon nanotubes Scientific paper

Main Article Content

Matthew Raj Alias
Chong-Boon Ong
Mohamad Suffian Mohamad Annuar


The immobilization of cross-linked tannase onto carboxyl-function­alized multi-walled carbon nanotubes (MWCNT-COOH) was achieved via physical adsorption. Glutaraldehyde was used to cross-link the enzyme mole­cules. Spectroscopic and morphological characterizations of the enzyme-nano­tubes composite were carried out, which authenticated the successful adsorpt­ion event. Enzyme composite is proven equal to, or even superior than free tannase, in terms of catalytic activities and stabilities, when measured under different thermal, pH and recycling conditions. Whilst both free and immo­bilized tannase preparations exhibited optimum catalysis at pH 5.0 and 35 °C, tannase-nanotubes composite possesses better thermal stability. The immobil­ized preparation retained 75 % of its initial catalytic activity following ten con­secutive uses. The study demonstrated a facile method to produce catalytically efficient nanobiocatalyst composite for biotechnological applications.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
M. R. Alias, C.-B. Ong, and M. S. Mohamad Annuar, “Adsorption of tannase from Aspergillus ficuum to carboxyl-functionalized multi-walled carbon nanotubes: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 5, May 2023.
Biochemistry & Biotechnology

Funding data


A. S. Ristinmaa, T. Coleman, L. Cesar, A. Langborg Weinmann, S. Mazurkewich, G. Brändén, M. Hasani, J. Larsbrink, J. Biol. Chem. 298 (2022) (

C. S. de Lima, B. T. A. Koelher, E. G. P. da Silva, A. Góes-Neto, R. P. Rezende, A. P. T. Uetanabaro, A. M. da Costa, Fungal Biology 126 (2022) 471 (

M. d. R. G. Dias, G. P. C. da Silva, A. de Pauloveloso, N. Krieger, C. Pilissão, Chirality 34 (2022) 1008 (

M. Markiton, S. Boncel, D. Janas, A. Chrobok, ACS Sustain. Chem. Eng. 5 (2017) 1685 (

Z. L. Li, L. Cheng, L. W. Zhang, W. Liu, W. Q. Ma, L. Liu, Process Saf. Environ. Prot. 107 (2017) 463 (

N. Singh, B. S. Dhanya, M. L. Verma, Mater. Sci. Energy Technol. 3 (2020) 808 (

Y. Yamada, K. Obuchi, N. Kikuchi, A. A. Almarasy, A. Fujimori, Langmuir 38 (2022) 5692 (

A. Ulu, M. Karaman, F. Yapıcı, M. Naz, S. Sayın, E. İ. Saygılı, B. Ateş, Catal. Lett. 150 (2020) 1679 (

S. Zhao, P. Feng, Z. Yu, T. Zhou, T. Gao, M. M. Redina, P. Liu, X. Li, Chemosphere 291 (2022) 132934 (

M. K. Ghide, K. Li, J. Wang, S. A. Abdulmalek, Y. Yan, Food Chem. 390 (2022) 133171 (

A. Singh, S. K. Rai, M. Manisha, S. K. Yadav, Mol. Catal. 511 (2021) 111723 (

L. Y. Jun, N. M. Mubarak, L. S. Yon, C. H. Bing, M. Khalid, P. Jagadish, E. C. Abdullah, Sci. Rep. 9 (2019) 2215 (

R. Ahmad, S. K. Khare, Bioresour. Technol. 252 (2018) 72 (

S. Sharma, T. K. Bhat, R. K. Dawra, Anal. Biochem. 279 (2000) 85 (

M. Mohammadi, M. Ashjari, M. Garmroodi, M. Yousefi, A. A. Karkhane, RSC Advances 6 (2016) 72275 (

C.-B. Ong, M. S. M. Annuar, Preparative Biochemistry & Biotechnology 48 (2018) 181 (

J. S. de Lima, M. P. Cabrera, C. M. de Souza Motta, A. Converti, L. B. Carvalho, Jr., Food Res. Int. 107 (2018) 470 (

R. Li, G. Fu, C. Liu, D. J. McClements, Y. Wan, S. Wang, T. Liu, Int. J. Biol. Macromol. 114 (2018) 1134 (

C. Wu, C. Xu, H. Ni, Q. Yang, H. Cai, A. Xiao, Bioresour. Technol. 205 (2016) 67 (

A. Xiao, C. Xu, Y. Lin, H. Ni, Y. Zhu, H. Cai, Electron. J. Biotechnol. 19 (2016) 1 (