Thermochemistry of pyrolyzed rutin and its esters prepared from facile biocatalytic route Scientific paper

Main Article Content

Nurul Nadiah Abd Razak
https://orcid.org/0000-0003-3044-7834
Mohamad Suffian Mohamad Annuar
https://orcid.org/0000-0003-3387-0160

Abstract

Pyrolysis of quercetin-3-O-rutinoside or rutin and its esters were investigated. Purified ester samples were prepared from lipase-catalyzed ester­ification of the parent flavonoid, i.e., rutin using acyl donors with different car­bon chain length. X-ray diffraction revealed the presence of crystalline peaks in the rutin esters. The degradation activation energies (Ea) as a function of con­version degree a were determined using Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa methods, with corroborative results. Disparity in Ea imp­lies distinct thermal degradation routes. For all studied compounds, degradation is a non-spontaneous process. The presence of acyl moieties and their corres­ponding carbon chain length in relation to thermodegradation profiles, Ea, entropy (ΔS) and enthalpy (ΔH) changes of the pyrolysis are discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. N. Abd Razak and M. S. Mohamad Annuar, “Thermochemistry of pyrolyzed rutin and its esters prepared from facile biocatalytic route: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 6, pp. 823–840, Jul. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

B. Kirschweng, D. M. Tilinger, B. Hégely, G. Samu, D. Tátraaljai, E. Földes, B. Pukánszky, Eur. Polym. J. 103 (2018) 228 (https://doi.org/10.1016/j.eurpolymj.2018.04.016)

A. M. Mahmoud, Exp. Toxicol. Pathol. 64 (2012) 783 (https://doi.org/10.1016/j.etp.2011.01.016)

W. Lee, S. K. Ku, J. S. Bae, Food Chem. Toxicol. 50 (2012) 3048 (https://doi.org/10.1016/j.fct.2012.06.013)

D. S Kim, S. B Lim, Prev. Nutr. Food Sci. 22 (2017) 131 (https://doi.org/10.3746/pnf.2017.22.2.131)

A. Hunyadi, A. Martins, T. J. Hsieh, A. Seres, I. Zupkó, PLoS ONE (2012) (https://doi.org/10.1371/journal.pone.0050619)

J. P. Lin, J. S. Yang, J. J. Lin, K. C. Lai, H. F. Lu, C. Y. Ma, R. S. C. Wu, K. C. Wu, F. S. Chueh, W. G. Wood, J. G. Chung, Environ. Toxicol. 27 (2012) 480 (https://doi.org/10.1002/tox.20662)

R. Mauludin, R. H. Müller, C. M. Keck, Int. J. Pharm. 370 (2009) 202 (https://doi.org/10.1016/j.ijpharm.2008.11.029)

L. Chebil, C. Humeau, A. Falcimaigne, J. M. Engasser, M. Ghoul, Process Biochem. 41 (2006) 2237 (https://doi.org/10.1016/j.procbio.2006.05.027)

J. Viskupicova, M. Ondrejovic, T. Maliar, in Biochemistry, D. Ekinci, Ed., InTech Europe, Rijeka, 2021, p. 263 (https://doi.org/10.5772/34174)

M. E. M. de Araújo, Y. E. Franco, M. C. Messias, G. B. Longato, J. A. Pamphile, P. D. O. Carvalho, Planta Med. 83 (2017) 7 (https://doi.org/10.1055/s-0042-118883)

J. Viskupicova, M . Danihelova, M. Ondrejovic, T. Liptaj, E. Sturdik, Food Chem. 123 (2010) 45 (https://doi.org/10.1016/j.foodchem.2010.03.125)

B. Mbatia, S. S. Kaki, B. Mattiasson, F. Mulaa, P. Adlercreutz, J. Agric. Food Chem. 59 (2011) 7021 (https://doi.org/10.1021/jf200867r)

A. D. M. Sørensen, L. K. Petersen, S. de Diego, N. S. Nielsen, B. M. Lue, Z. Yang, X. Xu, C. Jacobsen, Eur. J. Lipid Sci. Tech. 114 (2012) 434 (https://doi.org/10.1002/ejlt.201100354)

B. M. Lue, N. S. Nielsen, C. Jacobsen, L. Hellgren, Z. Guo, X. Xu, Food Chem. 123 (2010) 221 (https://doi.org/10.1016/j.foodchem.2010.04.009)

J. Viskupicova, M. Majekova, L. Horakova, J. Muscle Res. Cell. M. 36 (2015) 183 (https://doi.org/10.1007/s10974-014-9402-0)

G. Kodelia, K. Athanasiou, F. N. Kolisis, Appl. Biochem. Biotech. 44 (1994) 205 (https://doi.org/10.1007/BF02779657)

F. Mellou, H. Loutrari, H. Stamatis, C. Roussos, F. N. Kolisis, Process Biochem. 41 (2006) 2029 (https://doi.org/10.1016/j.procbio.2006.05.002)

M. I. Cardona, N. M. N. Le, S. Zaichik, D. M. Aragón, A. Bernkop-Schnürch, Int. J. Pharm. 562 (2019) 180 (https://doi.org/10.1016/j.ijpharm.2019.03.036)

N. N. A. Razak, M. S. M. Annuar, Ind. Eng. Chem. Res. 54 (2015) 5604 (https://doi.org/10.1021/acs.iecr.5b00996)

A. Kontogianni, V. Skouridou, V. Sereti, H. Stamatis, F. N. Kolisis, Eur. J. Lipid Sci. Technol. 103 (2010) 655 (https://doi.org/10.1002/1438-9312(200110)103:10<655::AID-EJLT655>3.0.CO;2-X)

M. Ardhaoui, A Falcimaigne, S. Ognier, J. M. Engasser, P. Moussou, G. Pauly, M. Ghoul, J. Biotechnol. 110 (2004) 265 (https://doi.org/10.1016/j.jbiotec.2004.03.003)

M. Şamlı, O. Bayraktar, F. Korel, J. Incl. Phenom. Macromol. 80 (2014) 37 (https://doi.org/10.1007/s10847-014-0396-4)

S. Sun, Y. Jin, Y. Hong, Z. Gu, L. Cheng, L. Zhaofeng, L. Caiming. Food Hydrocoll. 110 (2021) 106224 (https://doi.org/10.1016/j.foodhyd.2020.106224)

H. Chaaban, I. Ioannou, L. Chebil, M. Slimane, C. Gérardin, C. Paris, C. Charbonnel, L. Chekir, M. Ghoul, J. Food Process. Preserv. 41 (2017) e13203 (https://doi.org/10.1111/jfpp.13203)

Ç. Kadakal, T. Duman, R. Ekinci. Food Sci. Technol. 38 (2017) 667-673 (https://doi.org/10.1590/1678-457X.11417)

Ç. Kadakal, T. Duman, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 (2018) 1370-1375 (https://doi.org/10.5505/pajes.2017.03779)

E. M. da Costa, J. M. Barbosa Filho, T. G. do Nascimento, R. O. Macêdo, Thermochim. Acta 392 (2002) 79 (https://doi.org/10.1016/S0040-6031(02)00087-4)

S. Rohn, N. Buchner, G. Driemel, M. Rauser, L.W. Kroh, J. Agric. Food Chem. 55 (2007) 1568 (https://doi.org/10.1021/jf063221i)

N. Stănciuc, G. Râpeanu, in Non-Alcoholic Beverages, A. Grumezescu, A.M. Holban, Eds., Woodhead Publishing, Sawston, 2019, p. 407 (ISBN 9780128152706)

D. C. de Medeiros, S. S. Mizokami, N. Sfeir, S. R. Georgetti, A. Urbano, R. Casagrande, W. A. Verri, M. M. Baracat, ACS Omega 4 (2019) 1221-1227 (https://doi.org/10.1021/acsomega.8b02868)

M. K. Remanan, F. Zhu, Food Chem. 353 (2021) 128534 (https://doi.org/10.1016/j.foodchem.2020.128534)

M. Turturică, N. Stănciuc, G. Bahrim, G. Râpeanu, Food Bioprocess Tech. 9 (2016) 1706 (https://doi.org/10.1007/s11947-016-1753-7).