Thermochemistry of pyrolyzed rutin and its esters prepared from facile biocatalytic route

Main Article Content

Nurul Nadiah Abd Razak
Mohamad Suffian Mohamad Annuar
https://orcid.org/0000-0003-3387-0160

Abstract

Pyrolysis of quercetin-3-O-rutinoside or rutin and its esters were investigated. Purified ester samples were prepared from lipase-catalyzed esterification of the parent flavonoid i.e., rutin using acyl donors with different carbon chain length. X-ray diffraction revealed the presence of crystalline peaks in the rutin esters.  The degradation activation energies (Ea) as a function of conversion degree a were determined using Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, with corroborative results. Disparity in Ea implies distinct thermal degradation routes. For all studied compounds, degradation is a non-spontaneous process. The presence of acyl moeities and their corresponding carbon chain length in relation to thermodegradation profiles, Ea, entropy- (ΔS) and enthalpy (ΔH) changes of the pyrolysis are discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. N. Abd Razak and M. S. Mohamad Annuar, “Thermochemistry of pyrolyzed rutin and its esters prepared from facile biocatalytic route”, J. Serb. Chem. Soc., Jan. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

B. Kirschweng, D. M. Tilinger, B. Hégely, G. Samu, D. Tátraaljai, E. Földes, B. Pu-kánszky, Eur. Polym. J. 103 (2018) 228 (https://doi.org/10.1016/j.eurpolymj.2018.04.016)

A. M. Mahmoud, Exp. Toxicol. Pathol. 64 (2012) 783 (https://doi.org/10.1016/j.etp.2011.01.016)

W. Lee, S. K. Ku, J. S. Bae, Food Chem. Toxicol. 50 (2012) 3048 (https://doi.org/10.1016/j.fct.2012.06.013)

D. S Kim, S. B Lim, Prev. Nutr. Food Sci. 22 (2017) 131 (https://doi.org/10.3746/pnf.2017.22.2.131)

A. Hunyadi, A. Martins, T. J. Hsieh, A. Seres, I. Zupkó, PLoS ONE (2012) (https://doi.org/10.1371/journal.pone.0050619)

J. P. Lin, J. S. Yang, J. J. Lin, K. C. Lai, H. F. Lu, C. Y. Ma, R. S. C. Wu, K. C. Wu, F. S. Chueh, W. G. Wood, J. G. Chung, Environ. Toxicol. 27 (2012) 480 (https://doi.org/10.1002/tox.20662)

R. Mauludin, R. H. Müller, C. M. Keck, Int. J. Pharm. 370 (2009) 202 (https://doi.org/10.1016/j.ijpharm.2008.11.029)

L. Chebil, C. Humeau, A. Falcimaigne, J. M. Engasser, M. Ghoul, Process Bio-chem. 41 (2006) 2237 (https://doi.org/10.1016/j.procbio.2006.05.027)

J. Viskupicova, M. Ondrejovic, T. Maliar, Enzyme-mediated preparation of flavo-noid esters and their applications, in Biochemistry, D. Ekinci, Ed., InTech Europe, 2021, p. 263 (https://doi.org/10.5772/34174)

M. E. M. de Araújo, Y. E. Franco, M. C. Messias, G. B. Longato, J. A. Pamphile, P. D. O. Carvalho, Planta Med. 83 (2017) 7 (https://doi.org/10.1055/s-0042-118883)

J. Viskupicova, M . Danihelova, M. Ondrejovic, T. Liptaj, E. Sturdik, Food Chem. 123 (2010) 45 (https://doi.org/10.1016/j.foodchem.2010.03.125)

B. Mbatia, S. S. Kaki, B. Mattiasson, F. Mulaa, P. Adlercreutz, J. Agric. Food Chem. 59 (2011) 7021 (https://doi.org/10.1021/jf200867r)

A. D. M. Sørensen, L. K. Petersen, S. de Diego, N. S. Nielsen, B. M. Lue, Z. Yang, X. Xu, C. Jacobsen, Eur. J. Lipid Sci. Tech. 114 (2012) 434 (https://doi.org/10.1002/ejlt.201100354)

B. M. Lue, N. S. Nielsen, C. Jacobsen, L. Hellgren, Z. Guo, X. Xu, Food Chem. 123 (2010) 221 (https://doi.org/10.1016/j.foodchem.2010.04.009)

J. Viskupicova, M. Majekova, L. Horakova, J. Muscle Res. Cell. M. 36 (2015) 183 (https://doi.org/10.1007/s10974-014-9402-0)

G. Kodelia, K. Athanasiou, F. N. Kolisis, Appl. Biochem. Biotech. 44 (1994) 205 (https://doi.org/10.1007/BF02779657)

F. Mellou, H. Loutrari, H. Stamatis, C. Roussos, F. N. Kolisis, Process Biochem. 41 (2006) 2029 (https://doi.org/10.1016/j.procbio.2006.05.002)

M. I. Cardona, N. M. N. Le, S. Zaichik, D. M. Aragón, A. Bernkop-Schnürch, Int. J. Pharm. 562 (2019) 180 (https://doi.org/10.1016/j.ijpharm.2019.03.036)

N. N. A. Razak, M. S. M. Annuar, Ind. Eng. Chem. Res. 54 (2015) 5604 (https://doi.org/10.1021/acs.iecr.5b00996)

A. Kontogianni, V. Skouridou, V. Sereti, H. Stamatis, F. N. Kolisis, Eur. J. Lipid Sci. Technol. 103 (2010) 655-660 (https://doi.org/10.1002/1438-9312(200110)103:10<655::AID-EJLT655>3.0.CO;2-X)

M. Ardhaoui, A Falcimaigne, S. Ognier, J. M. Engasser, P. Moussou, G. Pauly, M. Ghoul, J. Biotechnol. 110 (2004), 265-272 (https://doi.org/10.1016/j.jbiotec.2004.03.003)

M. Şamlı, O. Bayraktar, F. Korel, J. Incl. Phenom. Macro. 80 (2014) 37 (https://doi.org/10.1007/s10847-014-0396-4)

S. Sun, Y. Jin, Y. Hong, Z. Gu, L. Cheng, L. Zhaofeng, L. Caiming. Food Hydrocoll. 110 (2021) 106224 (https://doi.org/10.1016/j.foodhyd.2020.106224)

H. Chaaban, I. Ioannou, L. Chebil, M. Slimane, C. Gérardin, C. Paris, C. Charbonnel, L. Chekir, M. Ghoul, J. Food Process. Preserv. 41 (2017) e13203 (https://doi.org/10.1111/jfpp.13203)

Ç. Kadakal, T. Duman, R. Ekinci. Food Sci. Technol. 38 (2017) 667-673 (https://doi.org/10.1590/1678-457X.11417)

Ç. Kadakal, T. Duman, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 (2018) 1370-1375 (https://doi.org/10.5505/pajes.2017.03779)

E. M. da Costa, J. M. Barbosa Filho, T. G. do Nascimento, R. O. Macêdo, Thermo-chim. Acta 392 (2002) 79 (https://doi.org/10.1016/S0040-6031(02)00087-4)

S. Rohn, N. Buchner, G. Driemel, M. Rauser, L.W. Kroh, J. Agric. Food Chem. 55 (2007) 1568 (https://doi.org/10.1021/jf063221i)

N. Stănciuc, G. Râpeanu, Kinetics of phytochemicals degradation during thermal processing of fruits beverages, in Non-Alcoholic Beverages, A. Grumezescu, A.M. Holban, Ed(s)., Woodhead Publishing, United Kingdom, 2019, p. 407 (ISBN 9780128152706)

D. C. de Medeiros, S. S. Mizokami, N. Sfeir, S. R. Georgetti, A. Urbano, R. Casa-grande, W. A. Verri, M. M. Baracat, Acs Omega 4 (2019) 1221-1227 (https://doi.org/10.1021/acsomega.8b02868)

M. K. Remanan, F. Zhu, Food Chem. 353 (2021) 128534 (https://doi.org/10.1016/j.foodchem.2020.128534)

M. Turturică, N. Stănciuc, G. Bahrim, G. Râpeanu, Food Bioprocess Tech. 9 (2016) 1706 (https://doi.org/10.1007/s11947-016-1753-7)