Quantum-mechanical study of the electronic properties of UxPuyOz compounds formed during the recovery of spent nuclear fuel Scientific paper

Main Article Content

Alexander Galashev
https://orcid.org/0000-0002-2705-1946
Alexey Vorob'ev
https://orcid.org/0000-0001-7174-4996
Yuri Zaikov

Abstract

A promising way to recover spent nuclear fuel (SNF) is the method of extracting transuranium compounds from molten salt, which makes it pos­sible to obtain a partial separation between transuranium compounds and lanth­an­ides. This work is devoted to the quantum mechanical study of changes in the structure, energy and electronic properties of the main SNF component, uranium dioxide, upon the removal of oxygen from the system. The influence of the considered properties on the substitution of uranium by plutonium is also studied at a ratio, of the number of plutonium atoms to uranium atoms, of 1:7 and 1:3. The removal of oxygen leads to a narrowing of the band gap up to the transition to a conductive state at a ratio of uranium to oxygen of 2:3. The band gap narrows and metallization sets in even when uranium is replaced by plut­on­ium. A two-stage UO2 metallization scheme based on lithium reduction and direct (electronic) reduction is proposed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Galashev, A. Vorob’ev, and Y. Zaikov, “Quantum-mechanical study of the electronic properties of UxPuyOz compounds formed during the recovery of spent nuclear fuel: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 11, pp. 1125–1134, Nov. 2023.
Section
Theoretical Chemistry

References

E. Curti, D.A. Kulik, J. Nucl. Mater. 534 (2020) 152140 (https://doi.org/10.1016/j.jnucmat.2020.152140)

D. H. Hurley, A. El-Azab, M. S. Bryan, M. W. D. Cooper, C. A. Dennett, K. Gofryk, L. He, M. Khafizov, G. H. Lander, M. E. Manley, J. M. Mann, C. A. Marianetti, K. Rickert, F. A. Selim, M. R. Tonks, J. P. Wharry, Chem. Rev. 122 (2022) 3711 (https://doi.org/10.1021/acs.chemrev.1c00262)

C. Ronchi, M. Sheindlin, D. Staicu, M. Kinoshita, J. Nucl. Mater. 327 (2004) 58 (https://doi.org/10.1016/j.jnucmat.2004.01.018)

K. Govers, S. Lemehov, M. How, M. Verwerft, J. Nucl. Mater. 376 (2008) 66 (https://doi.org/10.1016/j.jnucmat.2008.01.023)

S. Kihara, Z. Yoshida, H. Aoiyagi, K. Maeda , O. Shirai , Y. Kitatsuji, Y. Yoshida, Pure Appl. Chem. 71 (1999) 1771 (https://doi.org/10.1351/pac199971091771)

A. Y. Galashev, Int. J. Energy Res. 46 (2022) 3891 (https://doi.org/10.1002/er.7458)

G. L. Fredrickson, T.-S. Yoo, J. Nucl. Mater. 508 (2018) 51 (https://doi.org/10.1016/j.jnucmat.2018.05.037)

A.Y. Galashev, Int. J. Energy Res. 45 (2021) 11459 (https://doi.org/10.1002/er.6267)

T. P. Kaloni, N. Onder, J. Pencer, E. Torres, Ann. Nucl. Energy 144 (2020) 107511 (https://doi.org/10.1016/j.anucene.2020.107511)

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14 (2002) 2745 (https://doi.org/10.1088/0953-8984/14/11/302)

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev., B 57 (1998) 1505 (https://doi.org/10.1103/PhysRevB.57.1505)

J. P. Perdew, A. Zunger, Phys. Rev., B 23 (1981) 5048 (https://doi.org/10.1103/PhysRevB.23.5048)

H. J. Monkhorst, J. D. Pack, Phys. Rev., B 13 (1976) 5188 (https://doi.org/10.1103/PhysRevB.13.5188)

C. L. Dugan, G. G. Peterson, A. Mock, C. Young, J. M. Mann, M. Nastasi, M. Schubert, L. Wang, W.-N. Mei, I. Tanabe, P. A. Dowben, J. Petrosky, Eur. Phys. J., B 91 (2018) 67 (https://doi.org/10.1140/epjb/e2018-80489-x)

H. He, D. A. Andersson, D. D. Allred, K. D. Rector, J. Phys. Chem., C 117 (2013) 16540 (https://doi.org/10.1021/jp401149m).

Most read articles by the same author(s)