Molecular dynamics simulation of uranium nitride oxidation

Main Article Content

Prof. Alexander Galashev
https://orcid.org/0000-0002-2705-1946
Prof. Yrii Zaikov
https://orcid.org/0000-0001-6138-3955
Dr. Kseniya Abramova
https://orcid.org/0000-0001-6521-1966
Dr. Oksana Rakhmanova
https://orcid.org/0000-0001-6605-1626
Dr. Yurii Mochalov

Abstract

A molecular dynamic simulation of the uranium mononitride (UN) oxidation in an Ar-O medium in the temperature range of 373–2073 K is executed. The study is performed for UN particles with a crystalline and amorphous structure at an oxygen concentration in the gas mixture of 22.5 mol. %. The most efficient oxidation for an amorphous particle occurs at lower temperatures than that for a crystalline particle. Unlike crystalline fragments, amorphous particles undergo more severe fragmentation when they bind to oxygen. Fragmentation of UN particles is one of the main factors regulating the oxidation of finely dispersed media. Oxidation of a UN particle begins from its surface and in the case of an amorphous particle occurs faster than when the particle is crystalline. The process of particle fragmentation is facilitated by the penetration of oxygen atoms inside the particle. An increase in oxygen concentration in the gas mixture stimulates the oxidation process. Structural changes in the system are investigated by constructing partial radial distribution functions. The many-body U-N interactions prevent nitrogen escaping into the gaseous environment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Galashev, Y. Zaikov, K. Abramova, O. Rakhmanova, and Y. . Mochalov, “Molecular dynamics simulation of uranium nitride oxidation”, J. Serb. Chem. Soc., Dec. 2024.
Section
Physical Chemistry
Author Biographies

Prof. Alexander Galashev, Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Ural Federal University named after the first president of Russia B.N. Yeltsin, Yekaterinburg, Russia

Dr. Kseniya Abramova, Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Ural Federal University named after the first president of Russia B.N. Yeltsin, Yekaterinburg, Russia

Dr. Oksana Rakhmanova, Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Ural Federal University named after the first president of Russia B.N. Yeltsin

References

O. A. Grigorovich, S. V. Abramov, V.I . Voronin, et al. Method of separating nitride nuclear fuel from shell of fuel element fragments. Patent, Ru 2 732 721 С1, 22.09.2020 Bull. № 27.

А. Sajdova, Accident-tolerant uranium nitride. Thesis for the degree of licentiate of engineering. Gothenburg, Sweden 2017 (ISSN: 1652-943X)

C. O. T. Galvin, N. Kuganathan, N. J. Barron, R. W. Grimes, J. Appl. Phys. 135 (2024) 165101 (https://doi.org/10.1063/5.0177315)

L. Yang, N. Kaltsoyannis, J. Nucl. Mater. 577 (2023) 154330 (https://doi.org/10.1016/j.jnucmat.2023.154330)

R. Dell, V. Wheeler, E.J. Mclver, Trans. Faraday Soc. 62 (1966) 3591 (https://doi.org/10.1039/TF9666203591)

E-Y. Choi, C. Y. Won, J-S. Cha, W. Park, H. S. Im, S-S. Hong, J-M. Hur, J. Nucl. Mater. 444 (2014) 261 (https://doi.org/10.1016/j.jnucmat.2013.09.061)

Z. Da-Wei, J. H. Yu, P. Chunying, Y. Song. arXiv:1804.00095 [physics.comp-ph] (https://doi.org/10.48550/arXiv.1804.00095)

P. Tecmer, A. S. P. Gomes, S. Knecht, L. Visscher, J. Chem. Phys. 141 (2014) 041107 (https://doi.org/10.1063/1.4891801)

S. Zhang, F. Wang, J. Phys. Chem. A 121 (2017) 3966 (https://dx.doi.org/10.1021/acs.jpca.7b02985)

G. Liu, C. Zhang, S. M. Ciborowski, A. Asthana, L. Cheng, K. H. Bowen, J. Phys. Chem. A 124 (2020) 6486 (https://dx.doi.org/10.1021/acs.jpca.0c03735)

J. Zhao, C.-X. Chi, L.-Y. Meng, et al., J. Chem. Phys. 157 (2022) 054301 (https://doi.org/10.1063/5.0098068)

A. Sunaga, C. Tabata, T. Yamamura, J. Phys. Chem. A 126 (2022) 8606 (https://doi.org/10.1021/acs.jpca.2c05216)

F. Wei, G. Wu, W.H. Eigen Schwarz, J. Li, Theor. Chem. Acc. 129 (2011) 467 (https://doi.org/110.1007/s00214-010-0885-5)

L. Verlet, Phys. Rev. 159 (1967) 98 (https://doi.org/10.1103/PhysRev.15998)

V. I. Tseplyaev, S. V. Starikov, J. Nucl. Mater. 480 (2016) 7 (https://doi.org/10.1016/j.jnucmat.2016.07.048)

M. W. Cooper, N. Kuganathan, P. A. Burr, M. J.-D. Rusthon, R. W. Grimes, C. R. Stanek, D. A. Andersson, J. Phys.: Condens. Matter. 28 (2016) 405401 (https://doi.org/10.1088/0953-8984/28/40/405401)

M. Krishnamurth, S. Murad, J. D. Olson, Molec. Sim. 32 (2006) 11 (https://doi.org/10.1080/08927020500474318)

K. Kurosaki, K. Yano, K. Yamada, M. Uno, S. Yamanaka, J. Alloys Comp. 311 (2000) 305 (https://doi.org/10.1016/S0925-8388(00)01127-0)

A. Y. Galashev, K. Abramova, A. Vorob’ev, O. Rakhmanova, Yu. Zaikov, Electrochem. Mater. Technol. 2 (2023) 20232017 (https://doi.org/10.15826/elmattech.2023.2.017)

A. Y. Galashev, K. A. Ivanichkina, Yu. P. Zaikov, J. Solid State Chem. 286 (2020) 121278 (https://doi.org/10.1016/j.jssc.2020.121278)

S. Plimpton, J. Comp. Physics 117 (1995) 1. (https://doi.org/10.1006/jcph.1995.1039)

V. G. Baranov, A. V. Tenishev, R. S. Kuzmin, S. A. Pokrovskiy, et al., Ann. Nucl. Energy 87 (2016) 784 (https://doi.org/10.1016/j.anucene.2014.09.023)

S. Zhan, J. Bao, S. Ning, M. Zhang, et al., Chem. Eng. J. 498 (2024) 155322 (https://doi.org/10.1016/j.cej.2024.155322)

R. M. Dell, Y. J. Wheeler, N. J. Bridger, Trans. Faraday Soc. 63 (1967) 1286 (https://doi.org/10.1039/tf9676301286).