Oxidation of 1,5-benzodiazepine oximes catalysed by peroxidases Scientific paper

Main Article Content

Lidija Kosychova
https://orcid.org/0000-0001-6553-2137
Lina Rekovic
https://orcid.org/0009-0004-2440-4541
Irina Bratkovskaja
https://orcid.org/0009-0000-3843-7628
Ingrida Radveikiene
https://orcid.org/0009-0009-6583-9441
Regina Vidžiūnaitė
https://orcid.org/0009-0006-9879-3046

Abstract

 Oxidation of 1,3,4,5-tetrahydro-2H-1,5-benzodiazepine oximes catal­ysed by horseradish peroxidase (HRP) and recombinant Coprinus cinereus per­oxidase (rCiP) was studied spectrophotometrically. The reaction rate depend­ences on the substrate and hydrogen peroxide concentrations were investigated; the values of apparent KM and Vmax, catalytic, oxidation and reduction cons­tants (kcat, kox and kred, respectively) were calculated. The reactivity constants for the reactions catalysed by rCiP were higher than those for the HRP. Since oximes can have different structures depending on pH, the influence of pH on the rate of oxidation of compounds was studied. The dependences of the oxid­ation rate of the investigated oximes on the pH of the buffer solution were det­ermined, and the pKa values of the amino acids of peroxidases responsible for the rate of catalysis were obtained. The HRP activity dependence on pH has a classical bell-shaped character, while rCiP dependence has a complex character.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Kosychova, L. Rekovic, I. Bratkovskaja, I. Radveikiene, and R. Vidžiūnaitė, “Oxidation of 1,5-benzodiazepine oximes catalysed by peroxidases: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 2, pp. 151–164, Mar. 2024.
Section
Biochemistry & Biotechnology

References

W. B. Jakoby, Metabolic Basis of Detoxication: Metabolism of Functional Groups, Elsevier Science, Amsterdam, 1982 (ISBN: 9780323137997)

E. N. Shaw, 2-hydroxy-pyridine-N-oxide and process for preparing same, 1951 (http://www.google.com/patents/US2540218) Accessed May 8, 2023

N. K. F. W. Clauson-Kaas, N. Elming, J. Tormod Nielsen, Derivatives of N-hydroxy pyridines and process of production, 1956 (http://www.google.ch/patents/US2748142) Accessed May 8, 2023.

S. B. King, C-Nitroso Compounds, Oximes, N-Hydroxyguanidines and N-Hydroxyureas, John Wiley & Sons, Ltd., New York, 2005 (https://doi.org/10.1002/3527603751.CH7)

R. Rani, C. Granchi, Eur. J. Med. Chem. 97 (2015) 505 (https://doi.org/10.1016/J.EJMECH.2014.11.031)

P. Aastha, K. Navneet, A. Anshu, S. Pratima, K. Dharma, Res. J. Chem. Sci. 3 (2013) 90 (http://www.isca.me/rjcs/Archives/v3/i7/14.ISCA-RJCS-2013-057.php)

P. Jara-Ulloa, S. Catalán-Caro, C. A. Escobar, J. Chil. Chem. Soc. 59 (2014) 2520 (https://doi.org/10.4067/S0717-97072014000200027)

M. Whirl-Carrillo, R. Huddart, L. Gong, K. Sangkuhl, C. F. Thorn, R. Whaley, T. E. Klein, Clin. Pharmacol. Ther. 110 (2021) 563 (https://doi.org/10.1002/CPT.2350)

O. Mazimba, T. C. Molefe, Int. J. Chem. Stud. 3 (2015) 46 (https://www.chemijournal.com/archives/2015/vol3issue3/PartA/3-2-9.1.pdf)

L. Kosychova, R. Vidziunaite, G. Mikulskiene, I. Bratkovskaja, R. Janciene, Arkivoc 2015 (2015) 71 (https://doi.org/10.3998/ARK.5550190.P008.772)

S. Kumar, H. Kavitha, S. Arulmurugan, B. Venkatraman, Mini. Rev. Org. Chem. 9 (2012) 285 (https://doi.org/10.2174/1570193X11209030285)

K. D. Krewulak, H. J. Vogel, Biochim. Biophys. Acta – Biomembr. 1778 (2008) 1781 (https://doi.org/10.1016/J.BBAMEM.2007.07.026)

Y. Zhang, S. U. Geißen, C. Gal, Chemosphere 73 (2008) 1151 (https://doi.org/10.1016/j.chemosphere.2008.07.086)

T. Kosjek, S. Perko, M. Zupanc, M. Zanoški Hren, T. Landeka Dragičević, D. Žigon, B. Kompare, E. Heath, Water Res. 46 (2012) 355 (https://doi.org/10.1016/j.watres.2011.10.056)

T. Hata, H. Shintate, S. Kawai, H. Okamura, T. Nishida, J. Hazard. Mater. 181 (2010) 1175 (https://doi.org/10.1016/J.JHAZMAT.2010.05.103)

E. Marco-Urrea, M. Pérez-Trujillo, C. Cruz-Morató, G. Caminal, T. Vicent, Chemosphere 78 (2010) 474 (https://doi.org/10.1016/J.CHEMOSPHERE.2009.10.009)

A. Jelic, C. Cruz-Morató, E. Marco-Urrea, M. Sarrà, S. Perez, T. Vicent, M. Petrović, D. Barcelo, Water Res. 46 (2012) 955 (https://doi.org/10.1016/J.WATRES.2011.11.063)

S. Ostadhadi-Dehkordi, M. Tabatabaei-Sameni, H. Forootanfar, S. Kolahdouz, M. Ghazi-

-Khansari, M. A. Faramarzi, Bioresour. Technol. 125 (2012) 344 (https://doi.org/10.1016/J.BIORTECH.2012.09.039)

H. Kellner, P. Luis, M. J. Pecyna, F. Barbi, D. Kapturska, D. Krug̈er, D. R. Zak, R. Marmeisse, M. Vandenbol, M. Hofrichter, PLoS One 9 (2014) e95557 (https://doi.org/10.1371/JOURNAL.PONE.0095557)

K. G. Welinder, J. M. Mauro, & L. Norskov-Lauritsen, Biochem. Soc. Trans. 20 (1992) 337 (https://doi.org/https://doi.org/10.1042/bst0200337)

S.-J. Kim, J.-A. Lee, Y.-H. Kim, & B.-K. Song, J. Microbiol. Biotechnol. 19 (2009) 966 (https://doi.org/10.4014/jmb.0901.018)

A. K. Abelskov, A. T. Smith, C. B. Rasmussen, H. B. Dunford, K. G. Welinder, Biochemistry 36 (1997) 9453 (https://doi.org/10.1021/BI970387R)

Y. Yao, L. Huang, Y. Xu, Q. X. Li, J. Agric. Food Chem. 70 (2022) 646 (https://doi.org/10.1021/acs.jafc.1c06261)

R. Ivanec-Goranina, J. Kulys, Cent. Eur. J. Biol. 3 (2008) 224 (https://doi.org/10.2478/S11535-008-0021-X)

L. Rekovic, L. Kosychova, I. Bratkovskaja, R. Vidziunaite, J. Serb. Chem. Soc 83 (2018) 343 (https://doi.org/10.2298/JSC180226090R)

L. X. Shannon, E. Kay, J. Y. Lew, J. Biol. Chem. 241 (1966) 2166 (https://doi.org/https://doi.org/10.1016/S0021-9258(18)96680-9)

Z. S. Farhangrazi, I. Yamazaki, L. S. Powers, B. R. Copeland, T. Nakayama, T. Amachi, Biochemistry 33 (1994) 5647 (https://doi.org/https://doi.org/10.1021/bi00184a038)

D. P. Nelson, L. A. Kiesow, Anal. Biochem. 49 (1972) 474 (https://doi.org/https://doi.org/10.1016/0003-2697(72)90451-4)

E. Torres, M. Ayala, Biocatalysis based on heme peroxidases: Peroxidases as potential industrial biocatalysts, Springer, Berlin, 2010 (https://doi.org/https://doi.org/10.1007/978-3-642-12627-7_3)

B. M. Aveline, I. E. Kochevar, R. W. Redmond, J. Am. Chem. Soc. 118 (1996) 10124 (https://doi.org/https://doi.org/10.1021/ja961989l)

K. Fukunishi, K. Kitada, I. Naito, Synthesis (Stuttgart) 3 (1991) 237 (https://doi.org/https://doi.org/10.1055/s-1991-26433)

S. Sahu, S. Sahu, S. Patel, S. Dash, B. K. Mishra, Indian J. Chem. 47 (2008) 259. (https://nopr.niscpr.res.in/handle/123456789/1410)

M. Nissum, A. Feis, G. Smulevich, Biospectroscopy 4 (1998) 355 (https://doi.org/https://doi.org/10.1002/(SICI)1520-6343(1998)4:6<355::AID-BSPY1>3.0.CO;2-I)

P. Tn, T. L. Poulos, J. Kraut, J. Biol. Chem. 255 (1980) 8199 (https://doi.org/https://doi.org/10.1016/S0021-9258(19)70630-9)

G. Smulevich, A. Feis, C. Focardi, J. Tams, K. G. Welinder, Biochemistry 33 (1994) 15425 (https://doi.org/https://doi.org/10.1021/BI00255A024)

S. Ramalingam, M. Karabacak, S. Periandy, N. Puviarasan, D. Tanuja, Spectrochim. Acta, A 96 (2012) 207 (https://doi.org/10.1016/j.saa.2012.03.090)

S. Hashimoto, Y. Tatsuno, T. Kitagawa, Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 2417 (https://doi.org/https://doi.org/10.1073/PNAS.83.8.2417)

I. Yamazaki, M. Tamura, & R. Nakajima, Mol. Cell. Biochem. 40 (1981) 143 (https://doi.org/https://doi.org/10.1007/BF00224608).

Most read articles by the same author(s)