New pyrene and fluorene-based π-conjugated Schiff bases: Theoretical and experimental investigation of optical properties Scientific paper

Main Article Content

Yunuscan Sivrikaya
https://orcid.org/0000-0001-7158-3205
Handan Can Sakarya
https://orcid.org/0000-0001-8174-1350
Gökhan Kılıç
https://orcid.org/0000-0002-6762-6898
Sultan Funda Ekti
https://orcid.org/0000-0001-6810-0030
Merve Yandımoğlu
https://orcid.org/0000-0003-1010-0032

Abstract

The new Schiff bases with D-π-A system were synthesized by the reaction of polycyclic aldehydes and substituted benzothiazoles. The structures of the synthesized Schiff bases (7a and 9a) were determined by FT-IR, 1H-NMR, 13C-NMR, ESI-Mass and elemental analyses. The optical properties of the new compounds were investigated and the optical band gaps (Eg) were calculated by the Tauc method using the UV–Vis absorption spectra. Density functional theory (DFT/B3LYP/6-31G(d,p)) calculations were conducted to get more insight on the structural and electronic properties of novel Schiff bases. The optimized molecular geometry, UV–Vis spectroscopic parameters and HOMO–LUMO energies were examined and the calculated results were com­pared with experimental data.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Y. . Sivrikaya, H. Can Sakarya, G. . Kılıç, S. F. Ekti, and M. Yandımoğlu, “New pyrene and fluorene-based π-conjugated Schiff bases: Theoretical and experimental investigation of optical properties: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 7-8, pp. 1025–1038, Aug. 2024.
Section
Theoretical Chemistry
Author Biography

Handan Can Sakarya, Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, Eskişehir, Türkiye

Faculty of Arts and Science

Department of Chemistry

Funding data

References

H. Schiff, Justus Liebigs Ann. Chem. 150 (1869) 193

N. Öztürk, MSc Thesis, Istanbul University, 1998

C. Sasaki, K. Nakajima, M. Kojima, J. Fujita, Bull. Chem. Soc. Jpn. 64 (1991) 1318 (https://doi.org/10.1246/bcsj.64.1318)

S. Kanemasa, M. Yoshioka, O. Tsuge, Bull. Chem. Soc. Jpn. 62 (1989) 869 (https://doi.org/10.1246/bcsj.62.869)

M. F. Aly, M. I. Younes, S. A. Metwally, Tetrahedron 50 (1994) 3159 (https://doi.org/10.1016/S0040-4020(01)81114-5)

A. E. Taggi, A. M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J. Am. Chem. Soc. 124 (2002) 6626 (https://doi.org/10.1021/ja0258226)

K. Singh, M. S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147 (https://doi.org/10.1016/j.ejmech.2005.06.006)

S. K. Sridhar, M. Saravanan, A. Ramesh, Eur. J. Med. Chem. 36 (2001) 615 (https://doi.org/10.1016/S0223-5234(01)01255-7)

R. Mladenova, M. Ignatova, N. Manolova, T. Petrova, I. Rashkov, Eur. Polym. J. 38 (2002) 989 (https://doi.org/10.1016/S0014-3057(01)00260-9)

M. Koole, R. Frisenda, M. L. Petrus, M. L. Perrin, H. S. van der Zant, T. J. Dingemans, Org. Electron. 34 (2016) 38 (https://doi.org/10.1016/j.orgel.2016.03.043)

N. Bouguerra, A. Růžička, C. Ulbricht, C. Enengl, S. Enengl, V. Pokorná, D. Výprachtický, E. Tordin, R. Aitout, V. Cimrová, D. A. M. Egbe, Macromolecules 49 (2016) 455 (https://doi.org/10.1021/acs.macromol.5b02267)

J. Jankowska, M. F. Rode, J. Sadlej, A. L. Sobolewski, ChemPhysChem 13 (2012) 4287 (https://doi.org/10.1002/cphc.201200560)

K. Haupt, K. Mosbach, Chem. Rev. 100 (2000) 2495 (https://doi.org/10.1021/cr990099w)

S. Pu, Z. Tong, G. Liu, R. Wang, J. Mater. Chem. C 1 (2013) 4726 (https://doi.org/10.1039/C3TC30804A)

M. Petrus, R. Bouwer, U. Lafont, S. Athanasopoulos, N. Greenham, T. Dingemans, J. Mater. Chem. A 2 (2014) 9474 (https://doi.org/10.1039/C4TA01629G)

A. Bolduc, L. Rivier, S. Dufresne, W. Skene, Mater. Chem. Phys. 132 (2012) 722 (https://doi.org/10.1016/j.matchemphys.2011.12.002)

U. H. A. Azeez, D. Ayyappan, S. G. Chidambaram T, R. Singh, J. Subbiah, A. Sambandam, J. Mol. Struct. 1294 (2023) 136315 (https://doi.org/10.1016/j.molstruc.2023.136315)

S. Mukhopadhyay, C. Risko, S. R. Marder, J.-L. Brédas, Chem. Sci. 3 (2012) 3103 (https://doi.org/10.1039/C2SC20861J)

Z. Fatima, H. A. Basha, S. A. Khan, J. Mol. Struct. 1292 (2023) 136062 (https://doi.org/10.1016/j.molstruc.2023.136062)

W. Xu, Z. Shao, Y. Han, W. Wang, Y. Song, H. Hou, Dyes Pigm. 152 (2018) 171179 (https://doi.org/10.1016/j.dyepig.2018.01.056)

G. Turkoglu, M. Cinar, A. Buyruk, E. Tekin, S. Mucur, K. Kaya, T. Ozturk, J. Mater. Chem. C 4 (2016) 6045 (https://doi.org/10.1039/C6TC01285J)

M. Wałęsa‐Chorab, M. H. Tremblay, W. G. Skene, Chem. Eur. J. 22 (2016) 11382 (https://doi.org/10.1002/chem.201600859)

K. S. M. Salih, J. Mol. Struct. 1244 (2021) 131267 (https://doi.org/10.1016/j.molstruc.2021.131267)

K. Mangaiyarkarasi, A. Ravichandran, K. Anitha, A. Manivel, J. Mol. Struct. 1155 (2018) 758 (https://doi.org/10.1016/j.molstruc.2017.11.065)

G. A. Evingür, Ö. Pekcan, Compos. Struct. 183 (2018) 212 (https://doi.org/10.1016/j.compstruct.2017.02.058)

J. Singh, K. Shimakawa, in Advances in Amorphous Semiconductors, J. Singh, K. Shimakawa, Eds., Taylor and Francis New York, 2003 (ISBN 9780415287708)

M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24 (2003) 669 (https://doi.org/10.1002/jcc.10189)

R. Dennington, T. Keith, J. Millam, J.GaussView, version 5, Semichem Inc., Shawnee Mission, KS, 2009

C. Lee, W. Yang, R.G. Parr, Phys. Rev., B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

Gaussian 09, Rev. A, Gaussian Inc, Wallingford, CT, 2009

V. Barone, M. Cossi, J. Phys. Chem., A 102 (1998) 1995. (https://doi.org/10.1021/jp9716997).