Exploring the properties of uranyl nicotinate: Synthesis, characterisation, and thermal analysis Scientific paper

Main Article Content

Mileickson Aparecido de Assis Pires
https://orcid.org/0000-0001-6897-0546
Claudio Teodoro de Carvalho
Tiago André Denck Colman
https://orcid.org/0000-0003-1405-4571

Abstract

This study reports the successful synthesis and characterization of a uranyl nicotinate compound, UO2(C6H4NO2)2·0.25H2O. The compound was synthesized using a metal 1:2 ligand ratio and water as the solvent. The average yield of the compound was 67 %. Thermogravimetric analysis revealed mul­tiple stages of mass loss, including dehydration, nitrogen decomposition and UO22+ reduction. Fourier-transform infrared spectroscopy confirmed the coor­din­ation of the carboxylate group in the compound. Field emission gun scan­ning electron microscope analysis showed the particles with a regular oval shape. Energy-dispersive X-ray spectroscopy provided semi-quantitative data on the elemental composition of the compound. The major elements identified were uranium, carbon, oxygen and nitrogen. These results contribute to under­standing the compound’s synthesis, thermal behaviour, molecular composition, particle morphology and elemental composition. Further research can build upon these findings to explore potential applications and develop new com­pounds with tailored properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. A. de Assis Pires, C. . Teodoro de Carvalho, and T. A. Denck Colman, “Exploring the properties of uranyl nicotinate: Synthesis, characterisation, and thermal analysis: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 3, pp. 335–348, Apr. 2024.
Section
Inorganic Chemistry

Funding data

References

G. Ş. Aşkın, H. Necefoğlu, G. Yılmaz Nayir, R. Çatak Çelik, T. Hökelek, Acta Crystallogr., E 71 (2015) 561 (https://doi.org/10.1107/S2056989015008270)

S. K. Verma, N. Bhojak, Int. J. Chem. Phys. Sci. 7 (2018) 67 (https://doi.org/10.30731/ijcps.7.2.2018.67-74)

M. Sertçelik, N. Delibas, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E (2012) (https://doi.org/10.1107/s1600536812028814)

M. Sertçelik, B. Tercan, E. Şahin, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E (2009) (https://doi.org/10.1107/s1600536809006047)

T. Hökelek, F. Yılmaz, B. Tercan, M. Sertçelik, H. Necefoğlu, Acta Crystallogr., E (2009) (https://doi.org/10.1107/s1600536809033200)

M. Sertçelik, N. Çaylak Delibaş, S. Çevik, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E 68 (2012) m1196 (https://doi.org/10.1107/S1600536812035647)

G. Ş. Aşkın, H. Necefoğlu, S. Özkaya, R. Çatak Çelik, T. Hökelek, Acta Crystallogr., E 72 (2016) 888 (https://doi.org/10.1107/S2056989016008689)

G. Ş. Aşkın, H. Necefoğlu, A. M. Tonbul, N. Dilek, T. Hökelek, Acta Crystallogr., E 71 (2015) 479 (https://doi.org/10.1107/S2056989015006490)

V. A. Cocalia, M. P. Jensen, J. D. Holbrey, S. K. Spear, D. C. Stepinski, R. D. Rogers, Dalton Transactions (2005) 1966 (https://doi.org/10.1039/b502016f)

M. A. Degli-Esposti, P. J. Smolak, H. Walczak, J. Waugh, C.-P. Huang, R. F. DuBose, R. G. Goodwin, C. A. Smith, J. Exp. Med. 186 (1997) 1165 (https://doi.org/10.1084/jem.186.7.1165)

A. S. Ojo, S. Mamman, P. O. Ukoha, J. Appl. Phys. Sci. Int. (2022) 1 (https://doi.org/10.56557/japsi/2022/v14i17456)

D. Munz, Organometallics 37 (2018) 275 (https://doi.org/10.1021/acs.organomet.7b00720)

S.-S. Chen, CrystEngComm 18 (2016) 6543 (https://doi.org/10.1039/C6CE01258B)

H.-Z. Duan, C. Hu, Y.-L. Li, S.-H. Wang, Y. Xia, X. Liu, J. Wang, Y.-X. Chen, J. Am. Chem. Soc. 144 (2022) 22831 (https://doi.org/10.1021/jacs.2c09683)

K. Otake, H. Kitagawa, Small 17 (2021) 2006189 (https://doi.org/10.1002/smll.202006189)

P.-F. Yao, Y. Tao, H.-Y. Li, X.-H. Qin, D.-W. Shi, F.-P. Huang, Q. Yu, X.-X. Qin, H.-D. Bian, Cryst. Growth Des. 15 (2015) 4394 (https://doi.org/10.1021/acs.cgd.5b00724)

S. Dalai, M. Bera, A. Rana, D. S. Chowdhuri, E. Zangrando, Inorg. Chim. Acta 363 (2010) 3407 (https://doi.org/10.1016/j.ica.2010.06.043)

P. Thuéry, Inorg. Chem. Commun. 12 (2009) 800 (https://doi.org/10.1016/j.inoche.2009.06.021)

X. Kong, Y. Ren, L. Long, R. Huang, L. Zheng, Inorg. Chem. Commun. 10 (2007) 894 (https://doi.org/10.1016/j.inoche.2007.03.023)

G. T. Kent, J. Murillo, G. Wu, S. Fortier, T. W. Hayton, Inorg. Chem. 59 (2020) 8629 (https://doi.org/10.1021/acs.inorgchem.0c01224)

P. L. Arnold, D. Patel, C. Wilson, J. B. Love, Nature (2008) (https://doi.org/10.1038/nature06467)

A. Kumar, D. Lionetti, V. W. Day, J. D. Blakemore, J. Am. Chem. Soc. (2020) (https://doi.org/10.1021/jacs.9b11903)

J. A. Teixeira, W. D. G. Nunes, T. A. D. Colman, A. L. C. S. do Nascimento, F. J. Caires, F. X. Campos, D. A. Gálico, M. Ionashiro, Thermochim. Acta 624 (2016) 59 (https://doi.org/10.1016/j.tca.2015.11.023)

F. O. Farias, A. C. Jasko, T. A. D. Colman, L. A. Pinheiro, E. Schnitzler, A. C. Barana, I. M. Demiate, Braz. Arch. Biol. Technol. 57 (2014) 821 (https://doi.org/10.1590/S1516-8913201402506)

F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, A. C. S. Carvalho, F. J. Caires, A. B. Siqueira, M. Ionashiro, Thermochim. Acta 651 (2017) 73 (https://doi.org/10.1016/j.tca.2017.03.002)

T. A. D. Colman, D. J. C. Gomes, F. J. Caires, O. T. Filho, R. de C. da Silva, M. Ionashiro, J. Anal. Appl. Pyrolysis 111 (2015) 132 (https://doi.org/10.1016/j.jaap.2014.11.021)

A. L. C. S. do Nascimento, F. J. Caires, T. A. D. Colman, D. J. C. Gomes, G. Bannach, M. Ionashiro, Thermochim. Acta 604 (2015) 7 (https://doi.org/10.1016/j.tca.2014.12.022)

T. A. D. Colman, D. J. C. Gomes, F. J. Caires, O. T. Filho, R. de C. da Silva, M. Ionashiro, Thermochim. Acta 591 (2014) 111 (https://doi.org/10.1016/j.tca.2014.06.013)

A. S. de Souza, B. Ekawa, C. T. de Carvalho, J. A. Teixeira, M. Ionashiro, T. A. D. Colman, Thermochim. Acta 683 (2020) 178443 (https://doi.org/10.1016/j.tca.2019.178443)

K. V. Tenório, J. A. Teixeira, L. M. de Campos Pinto, F. J. Caires, O. Treu-Filho, F. A. dos Santos, T. A. Denck Colman, A. Cuin, C. T. de Carvalho, J. Rare Earths 36 (2018) 1090 (https://doi.org/10.1016/j.jre.2018.03.019)

M. D. Colman, S. R. da S. Lazzarotto, M. Lazzarotto, F. A. Hansel, T. A. D. Colman, E. Schnitzler, J. Anal. Appl. Pyrolysis 119 (2016) 157 (https://doi.org/10.1016/j.jaap.2016.03.005)

J. A. Teixeira, W. D. G. Nunes, A. L. C. S. do Nascimento, T. A. D. Colman, F. J. Caires, D. A. Gálico, M. Ionashiro, J. Anal. Appl. Pyrolysis 121 (2016) 267 (https://doi.org/10.1016/j.jaap.2016.08.0060)

C. D. Bet, C. S. de Oliveira, T. A. D. Colman, R. Z. B. Bisinella, C. Beninca, L. G. Lacerda, A. P. Ramos, E. Schnitzler, J. Therm. Anal. Calorim. 138 (2019) 2733 (https://doi.org/10.1007/s10973-019-08374-7)

C. D. Bet, C. S. de Oliveira, T. A. D. Colman, M. T. Marinho, L. G. Lacerda, A. P. Ramos, E. Schnitzler, Food Chem. 264 (2018) 435 (https://doi.org/10.1016/j.foodchem.2018.05.021)

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9 (2012) 671 (https://doi.org/10.1038/nmeth.2089)

Y. Yang, J. Liu, Y. Sun, S. Hu, Y. Gao, Z. Zhang, S. Luo, L. Rao, J. Chem. Thermodyn. 113 (2017) 350 (https://doi.org/10.1016/j.jct.2017.07.002)

J. A. Teixeira, W. D. G. Nunes, A. L. C. S. do Nascimento, T. A. D. Colman, F. J. Caires, D. A. Gálico, M. Ionashiro, J. Anal. Appl. Pyrolysis 121 (2016) 267 (https://doi.org/10.1016/j.jaap.2016.08.006)

G. Deacon, Coord. Chem. Rev. 33 (1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)

F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, O. Treu-Filho, F. J. Caires, A. B. Siqueira, M. Ionashiro, J. Therm. Anal. Calorim. 123 (2016) 91 (https://doi.org/10.1007/s10973-015-4956-7)

M. A. Abu-Dalo, N. A. F. Al-Rawashdeh, I. R. Al-Mheidat, N. S. Nassory, IOP Conf. Ser. Mater. Sci. Eng. 92 (2015) 012023 (https://doi.org/10.1088/1757-899X/92/1/012023).