Exploring the properties of uranyl nicotinate: Synthesis, characterisation, and thermal analysis Scientific paper
Main Article Content
Abstract
This study reports the successful synthesis and characterization of a uranyl nicotinate compound, UO2(C6H4NO2)2·0.25H2O. The compound was synthesized using a metal 1:2 ligand ratio and water as the solvent. The average yield of the compound was 67 %. Thermogravimetric analysis revealed multiple stages of mass loss, including dehydration, nitrogen decomposition and UO22+ reduction. Fourier-transform infrared spectroscopy confirmed the coordination of the carboxylate group in the compound. Field emission gun scanning electron microscope analysis showed the particles with a regular oval shape. Energy-dispersive X-ray spectroscopy provided semi-quantitative data on the elemental composition of the compound. The major elements identified were uranium, carbon, oxygen and nitrogen. These results contribute to understanding the compound’s synthesis, thermal behaviour, molecular composition, particle morphology and elemental composition. Further research can build upon these findings to explore potential applications and develop new compounds with tailored properties.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 402435/2022-2 -
Financiadora de Estudos e Projetos
Grant numbers 04.13.0448.00/2013
References
G. Ş. Aşkın, H. Necefoğlu, G. Yılmaz Nayir, R. Çatak Çelik, T. Hökelek, Acta Crystallogr., E 71 (2015) 561 (https://doi.org/10.1107/S2056989015008270)
S. K. Verma, N. Bhojak, Int. J. Chem. Phys. Sci. 7 (2018) 67 (https://doi.org/10.30731/ijcps.7.2.2018.67-74)
M. Sertçelik, N. Delibas, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E (2012) (https://doi.org/10.1107/s1600536812028814)
M. Sertçelik, B. Tercan, E. Şahin, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E (2009) (https://doi.org/10.1107/s1600536809006047)
T. Hökelek, F. Yılmaz, B. Tercan, M. Sertçelik, H. Necefoğlu, Acta Crystallogr., E (2009) (https://doi.org/10.1107/s1600536809033200)
M. Sertçelik, N. Çaylak Delibaş, S. Çevik, H. Necefoğlu, T. Hökelek, Acta Crystallogr., E 68 (2012) m1196 (https://doi.org/10.1107/S1600536812035647)
G. Ş. Aşkın, H. Necefoğlu, S. Özkaya, R. Çatak Çelik, T. Hökelek, Acta Crystallogr., E 72 (2016) 888 (https://doi.org/10.1107/S2056989016008689)
G. Ş. Aşkın, H. Necefoğlu, A. M. Tonbul, N. Dilek, T. Hökelek, Acta Crystallogr., E 71 (2015) 479 (https://doi.org/10.1107/S2056989015006490)
V. A. Cocalia, M. P. Jensen, J. D. Holbrey, S. K. Spear, D. C. Stepinski, R. D. Rogers, Dalton Transactions (2005) 1966 (https://doi.org/10.1039/b502016f)
M. A. Degli-Esposti, P. J. Smolak, H. Walczak, J. Waugh, C.-P. Huang, R. F. DuBose, R. G. Goodwin, C. A. Smith, J. Exp. Med. 186 (1997) 1165 (https://doi.org/10.1084/jem.186.7.1165)
A. S. Ojo, S. Mamman, P. O. Ukoha, J. Appl. Phys. Sci. Int. (2022) 1 (https://doi.org/10.56557/japsi/2022/v14i17456)
D. Munz, Organometallics 37 (2018) 275 (https://doi.org/10.1021/acs.organomet.7b00720)
S.-S. Chen, CrystEngComm 18 (2016) 6543 (https://doi.org/10.1039/C6CE01258B)
H.-Z. Duan, C. Hu, Y.-L. Li, S.-H. Wang, Y. Xia, X. Liu, J. Wang, Y.-X. Chen, J. Am. Chem. Soc. 144 (2022) 22831 (https://doi.org/10.1021/jacs.2c09683)
K. Otake, H. Kitagawa, Small 17 (2021) 2006189 (https://doi.org/10.1002/smll.202006189)
P.-F. Yao, Y. Tao, H.-Y. Li, X.-H. Qin, D.-W. Shi, F.-P. Huang, Q. Yu, X.-X. Qin, H.-D. Bian, Cryst. Growth Des. 15 (2015) 4394 (https://doi.org/10.1021/acs.cgd.5b00724)
S. Dalai, M. Bera, A. Rana, D. S. Chowdhuri, E. Zangrando, Inorg. Chim. Acta 363 (2010) 3407 (https://doi.org/10.1016/j.ica.2010.06.043)
P. Thuéry, Inorg. Chem. Commun. 12 (2009) 800 (https://doi.org/10.1016/j.inoche.2009.06.021)
X. Kong, Y. Ren, L. Long, R. Huang, L. Zheng, Inorg. Chem. Commun. 10 (2007) 894 (https://doi.org/10.1016/j.inoche.2007.03.023)
G. T. Kent, J. Murillo, G. Wu, S. Fortier, T. W. Hayton, Inorg. Chem. 59 (2020) 8629 (https://doi.org/10.1021/acs.inorgchem.0c01224)
P. L. Arnold, D. Patel, C. Wilson, J. B. Love, Nature (2008) (https://doi.org/10.1038/nature06467)
A. Kumar, D. Lionetti, V. W. Day, J. D. Blakemore, J. Am. Chem. Soc. (2020) (https://doi.org/10.1021/jacs.9b11903)
J. A. Teixeira, W. D. G. Nunes, T. A. D. Colman, A. L. C. S. do Nascimento, F. J. Caires, F. X. Campos, D. A. Gálico, M. Ionashiro, Thermochim. Acta 624 (2016) 59 (https://doi.org/10.1016/j.tca.2015.11.023)
F. O. Farias, A. C. Jasko, T. A. D. Colman, L. A. Pinheiro, E. Schnitzler, A. C. Barana, I. M. Demiate, Braz. Arch. Biol. Technol. 57 (2014) 821 (https://doi.org/10.1590/S1516-8913201402506)
F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, A. C. S. Carvalho, F. J. Caires, A. B. Siqueira, M. Ionashiro, Thermochim. Acta 651 (2017) 73 (https://doi.org/10.1016/j.tca.2017.03.002)
T. A. D. Colman, D. J. C. Gomes, F. J. Caires, O. T. Filho, R. de C. da Silva, M. Ionashiro, J. Anal. Appl. Pyrolysis 111 (2015) 132 (https://doi.org/10.1016/j.jaap.2014.11.021)
A. L. C. S. do Nascimento, F. J. Caires, T. A. D. Colman, D. J. C. Gomes, G. Bannach, M. Ionashiro, Thermochim. Acta 604 (2015) 7 (https://doi.org/10.1016/j.tca.2014.12.022)
T. A. D. Colman, D. J. C. Gomes, F. J. Caires, O. T. Filho, R. de C. da Silva, M. Ionashiro, Thermochim. Acta 591 (2014) 111 (https://doi.org/10.1016/j.tca.2014.06.013)
A. S. de Souza, B. Ekawa, C. T. de Carvalho, J. A. Teixeira, M. Ionashiro, T. A. D. Colman, Thermochim. Acta 683 (2020) 178443 (https://doi.org/10.1016/j.tca.2019.178443)
K. V. Tenório, J. A. Teixeira, L. M. de Campos Pinto, F. J. Caires, O. Treu-Filho, F. A. dos Santos, T. A. Denck Colman, A. Cuin, C. T. de Carvalho, J. Rare Earths 36 (2018) 1090 (https://doi.org/10.1016/j.jre.2018.03.019)
M. D. Colman, S. R. da S. Lazzarotto, M. Lazzarotto, F. A. Hansel, T. A. D. Colman, E. Schnitzler, J. Anal. Appl. Pyrolysis 119 (2016) 157 (https://doi.org/10.1016/j.jaap.2016.03.005)
J. A. Teixeira, W. D. G. Nunes, A. L. C. S. do Nascimento, T. A. D. Colman, F. J. Caires, D. A. Gálico, M. Ionashiro, J. Anal. Appl. Pyrolysis 121 (2016) 267 (https://doi.org/10.1016/j.jaap.2016.08.0060)
C. D. Bet, C. S. de Oliveira, T. A. D. Colman, R. Z. B. Bisinella, C. Beninca, L. G. Lacerda, A. P. Ramos, E. Schnitzler, J. Therm. Anal. Calorim. 138 (2019) 2733 (https://doi.org/10.1007/s10973-019-08374-7)
C. D. Bet, C. S. de Oliveira, T. A. D. Colman, M. T. Marinho, L. G. Lacerda, A. P. Ramos, E. Schnitzler, Food Chem. 264 (2018) 435 (https://doi.org/10.1016/j.foodchem.2018.05.021)
C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9 (2012) 671 (https://doi.org/10.1038/nmeth.2089)
Y. Yang, J. Liu, Y. Sun, S. Hu, Y. Gao, Z. Zhang, S. Luo, L. Rao, J. Chem. Thermodyn. 113 (2017) 350 (https://doi.org/10.1016/j.jct.2017.07.002)
J. A. Teixeira, W. D. G. Nunes, A. L. C. S. do Nascimento, T. A. D. Colman, F. J. Caires, D. A. Gálico, M. Ionashiro, J. Anal. Appl. Pyrolysis 121 (2016) 267 (https://doi.org/10.1016/j.jaap.2016.08.006)
G. Deacon, Coord. Chem. Rev. 33 (1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)
F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, O. Treu-Filho, F. J. Caires, A. B. Siqueira, M. Ionashiro, J. Therm. Anal. Calorim. 123 (2016) 91 (https://doi.org/10.1007/s10973-015-4956-7)
M. A. Abu-Dalo, N. A. F. Al-Rawashdeh, I. R. Al-Mheidat, N. S. Nassory, IOP Conf. Ser. Mater. Sci. Eng. 92 (2015) 012023 (https://doi.org/10.1088/1757-899X/92/1/012023).