Characterization of enalapril maleate: An approach using thermoanalytical, thermokinetic and spectroscopic techniques Scientific paper

Main Article Content

José Augusto Teixeira
Adrian Santos de Souza
https://orcid.org/0009-0002-4230-8006
Laís da Silva Mendoza Kardek de Melo
Tiago André Denck Colman
https://orcid.org/0000-0003-1405-4571

Abstract

Enalapril maleate is a widely used drug for the treatment of cardio­vascular diseases. Its mechanism of action is to inhibit the angiotensin-con­verting enzyme selectively. Therefore, it is metabolized to enalaprilat by liver cells. The thermal behaviour of enalapril maleate was investigated by simul­taneous thermogravimetry and differential scanning calorimetry (TG-DSC), as well as with evolved gas analysis by simultaneous thermogravimetry and differ­ential scanning calorimetry coupled infrared spectroscopy (TG-DSC–FTIR). The results provided information on thermal stability, purity, thermal decom­position steps and the main products formed in the heating. The enalapril maleate was found to be stable up to 148 °C. Above this temperature causes thermal deg­rad­ation of the substance, which occurs in two stages in an inert atmosphere (N2) and three stages in an oxidizing atmosphere (air). Through the TG-DSC–FTIR the released gases were identified as maleic anhydride as a thermal decom­po­sition intermediate. DSC analysis showed that the material obtained 99.5 % pur­ity, which indicates high purity. Employing both the Kissinger and Friedman equations, alongside model fitting methods, the study reveals key insights. The Kissinger method unveils an apparent activation energy of 47.07±15.45 kJ mol-1 for the complete thermal breakdown, a finding corroborated by the Friedman method. Model fitting methods, the article applies them, yielding an apparent activation energy of 55.7±3.4 kJ mol-1 with a three-dimensional diffusion ther­mal degradation model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Augusto Teixeira, A. Santos de Souza, L. da Silva Mendoza Kardek de Melo, and T. A. Denck Colman, “Characterization of enalapril maleate: An approach using thermoanalytical, thermokinetic and spectroscopic techniques: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 10, pp. 1353–1362, Nov. 2024.
Section
Analytical Chemistry

References

G. S. Thind, A. Johnson, D. Bhatnagar, T. W. Henkel, Am. Heart J. 109 (1985) 852 (https://doi.org/10.1016/0002-8703(85)90650-7)

R. Kello, W. Abdelwahed, Design and evaluation of a new formulations of enalapril maleate 20 mg tablet in a time efficient and on alarge industrial scale, 2014 (https://api.semanticscholar.org/CorpusID:51815722)

R. K. Verbeeck, I. Kanfer, R. Löbenberg, B. Abrahamsson, R. Cristofoletti, D. W. Groot, P. Langguth, J. E. Polli, A. Parr, V. P. Shah, M. Mehta, J. B. Dressman, J. Pharm. Sci. 106 (2017) 1933 (https://doi.org/10.1016/j.xphs.2017.04.019)

S. P. Bhardwaj, S. Singh, J. Pharm. Biomed. Anal. 46 (2008) 113 (https://doi.org/10.1016/j.jpba.2007.09.014)

M. De Diego, S. Mennickent, G. Godoy, V. Miranda, Curr. Pharm. Anal. 7 (2011) 248 (https://doi.org/10.2174/157341211797458005)

D. M. Lima, L. D. dos Santos, E. M. Lima, J. Pharm. Biomed. Anal. 47 (2008) 934 (https://doi.org/10.1016/j.jpba.2008.02.030)

B. Stanisz, J. Pharm. Biomed. Anal. 31 (2003) 375 (https://doi.org/10.1016/S0731-7085(02)00325-4)

B. Stanisz, Acta Pol. Pharm. 61 (2004) 415 (https://pubmed.ncbi.nlm.nih.gov/15794332)

M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, J. Pharm. Biomed. Anal. 59 (2012) 190 (https://doi.org/10.1016/j.jpba.2011.10.011)

F. Q. Pires, T. Angelo, J. K. R. Silva, L. C. L. Sá-Barreto, E. M. Lima, G. M. Gelfuso, T. Gratieri, M. S. S. Cunha-Filho, J. Pharm. Biomed. Anal. 137 (2017) 196 (https://doi.org/10.1016/j.jpba.2017.01.037)

M. Herbrink, H. Vromans, J. Schellens, J. Beijnen, B. Nuijen, J. Pharm. Biomed. Anal. 148 (2018) 182 (https://doi.org/10.1016/j.jpba.2017.10.001)

A. K. Attia, M. M. Abdel-Moety, S. G. Abdel-Hamid, Arab. J. Chem. 10 (2017) S334 (https://doi.org/10.1016/j.arabjc.2012.08.006)

A. Raw, M. S. Furness, D. S. Gill, R. C. Adams, F. O. Holcombe Jr., L. X. Yu, Adv. Drug Deliv. Rev. 56 (2004) 397 (https://doi.org/10.1016/j.addr.2003.10.011)

F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, O. Treu-Filho, F. J. Caires, A. B. Siqueira, M. Ionashiro, J. Therm. Anal. Calorim. 123 (2016) 91 (https://doi.org/10.1007/s10973-015-4956-7)

J. A. Teixeira, W. D. G. Nunes, T. A. D. Colman, A. L. C. S. do Nascimento, F. J. Caires, F. X. Campos, D. A. Gálico, M. Ionashiro, Thermochim. Acta 624 (2016) 59 (https://doi.org/10.1016/j.tca.2015.11.023)

M. D. Colman, S. R. da S. Lazzarotto, M. Lazzarotto, F. A. Hansel, T. A. D. Colman, E. Schnitzler, J. Anal. Appl. Pyrolysis 119 (2016) 157 (https://doi.org/10.1016/j.jaap.2016.03.005)

ASTM, ASTM International: West Conshohocken, ASTM E698-05, PA, USA (2005) (https://www.astm.org/e0698-05.html)

S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1 (https://doi.org/10.1016/j.tca.2011.03.034)

S. Vyazovkin, A. K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L. A. Pérez-Maqu-eda, N. Sbirrazzuoli, Thermochim. Acta 689 (2020) 178597 (https://doi.org/10.1016/j.tca.2020.178597)

J. R. MacCallum, J. Tanner, Eur. Polym. J. 6 (1970) 1033 (https://doi.org/10.1016/0014-3057(70)90035-2)

N. V. Muravyev, A. N. Pivkina, N. Koga, Molecules 24 (2019) 2298 (https://doi.org/10.3390/molecules24122298)

B. Androsits, J. Therm. Anal. Calorim. 55 (1999) 1041 (https://doi.org/10.1023/A:1010123009883)

H. L. Friedman, J. Polym. Sci., C 6 (1964) 183 (https://doi.org/10.1002/polc.5070060121)

S. Vyazovkin, Molecules 25 (2020) 2813 (https://doi.org/10.3390/molecules25122813)

L. A. Pérez-Maqueda, J. M. Criado, P. E. Sánchez-Jiménez, J. Phys. Chem., A 110 (2006) 12456 (https://doi.org/10.1021/jp064792g)

A. Soria-Verdugo, E. Goos, N. García-Hernando, U. Riedel, Algal Res. 32 (2018) 11 (https://doi.org/10.1016/j.algal.2018.03.005)

A. K. Burnham, L. N. Dinh, J. Therm. Anal. Calorim. 89 (2007) 479 (https://doi.org/10.1007/s10973-006-8486-1)

M. Heydari, M. Rahman, R. Gupta, Int. J. Chem. Eng. 2015 (2015) 1 (https://doi.org/10.1155/2015/481739)

H. Mahmood, A. Shakeel, A. Abdullah, M. Khan, M. Moniruzzaman, Polymers (Basel) 13 (2021) 2504 (https://doi.org/10.3390/polym13152504)

A. Agić, E. G. Bajsić, J. Appl. Polym. Sci. 103 (2007) 764 (https://doi.org/10.1002/app.25040)

N. A. Mariano, M. A. G. Tommaselli, S. E. Kuri, Materwiss. Werksttech. 36 (2005) 325 (https://doi.org/10.1002/mawe.200500877).

Most read articles by the same author(s)