Square-pyramidal mononuclear, dinuclear and polymeric copper(II) complexes with (2-pyridinylmethyl)amino derivatives Scientific paper

Main Article Content

Stefan Richter
Peter Lönnecke
https://orcid.org/0000-0003-1335-0897
Dijana Bovan
https://orcid.org/0000-0001-8226-1623
Sanja Mijatović
Danijela Maksimović-Ivanić
https://orcid.org/0000-0002-8006-5079
Goran N Kaluđerović
https://orcid.org/0000-0001-5168-1000
Evamarie Hey-Hawkins
https://orcid.org/0000-0003-4267-0603

Abstract

The coordination behavior of three ligand precursors 2-[(2-pyr­idin­yl­methyl)amino]acetic acid hydrochloride, 4-[(2-pyridinylmethyl)amino]benzoic acid hydrochloride and 4-{[2-(pyridin-2-ylmethylamino)ethylamino]methyl}­ben­zoic acid hydrochloride, HL1∙HCl–HL3∙HCl, respectively, in copper(II) complexes is described. The complexes were characterized by elemental ana­lysis, ESI mass spectrometry and IR spectroscopy, as well as X-ray structural analysis. The reaction of copper(II) with HL1∙HCl in methanol afforded the polymeric complex [{Cu(µ-Cl)2(MeL12N,N’)}n] (1) featuring the methyl ester of L1 (MeL1). With HL2∙HCl or HL3∙HCl, the dimeric complex [{CuCl(µ-Cl)(HL22N,N’)}2] (2) or the mononuclear complex [CuCl2(HL33N,N,N’’)] (3) were obtained. All complexes exhibited square-pyramidal geo­metries. In 1, polymeric chains are formed through bridging chlorido lig­ands without typical hydrogen bonding interaction. Contrarily, the COOH group in 2 is participating in the formation of intermolecular hydrogen bonding forming a supramolecular structure. In 3, intermolecular hydrogen bonding (Cl···H(O)) leads to a 1-D polymeric structure. The copper(II) complex 2 dim­in­ished viability of human 8505C, MCF-7, 518A2 and SW-480 cell lines. The tum­oric­idal effect of 2 was realized mainly through caspase-mediated apoptosis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Richter, “Square-pyramidal mononuclear, dinuclear and polymeric copper(II) complexes with (2-pyridinylmethyl)amino derivatives: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1279–1291, Dec. 2023.
Section
Theme issue honoring Professor Vukadin Leovac's 80th birthday

References

M. R. Bond, in Exploring Chemistry with Pyridine Derivatives, IntechOpen, Rijeka, 2022 (https://doi.org/10.5772/intechopen.107124)

R. Diószegi, D. Bonczidai-Kelemen, A. Cs. Bényei, N. V. May, I. Fábián, N. Lihi, Inorg. Chem. 61 (2022) 2319 (https://doi.org/10.1021/acs.inorgchem.1c03728)

T. Klemens, K. Czerwińska, A. Szlapa-Kula, S. Kula, A. Świtlicka, S. Kotowicz, M. Siwy, K. Bednarczyk, S. Krompiec, K. Smolarek, S. Maćkowski, W. Danikiewicz, E. Schab-Balcerzak, B. Machura, Dalton Trans. 46 (2017) 9605 (https://doi.org/10.1039/C7DT01948C)

M. Stojičkov, S. Sturm, B. Čobeljić, A. Pevec, M. Jevtović, A. Scheitler, D. Radanović, L. Senft, I. Turel, K. Andjelković, M. Miehlich, K. Meyer, I. Ivanović-Burmazović, Europ. J. Inorg. Chem. 2020 (2020) 3347 (https://doi.org/10.1002/ejic.202000415)

S. H. Ahn, J. Shin, S. Nayab, H. Lee, Bull. Korean Chem. Soc. 37 (2016) 763 (https://doi.org/10.1002/bkcs.10747)

T. Zhu, Z. Guang-Yi, L. Xue-Qiang, X. Sai-Feng, Z. Qian-Jiang, W. Gregory Jackson, W. Zhan-Bing, L. La-Sheng, Inorg. Chim. Acta 357 (2004) 953 (https://doi.org/10.1016/j.ica.2003.09.027)

A. T. Çolak, O. Z. Yeşilel, O. Büyükgüngör, Polyhedron 29 (2010) 2127 (https://doi.org/10.1016/j.poly.2010.03.024)

M. Shukla, N. Srivastava, S. Saha, T. R. Rao, S. Sunkari, Polyhedron 30 (2011) 754 (https://doi.org/10.1016/j.poly.2010.12.036)

S. J. A. Guieu, A. M. M. Lanfredi, C. Massera, L. D. Pachón, P. Gamez, J. Reedijk, Catal. Today 96 (2004) 259 (https://doi.org/10.1016/j.cattod.2004.06.149)

10. S.-K. Kang, H.-W. Lee, N. Sengottuvelan, Y.-I. Kim, Bull. Korean Chem. Soc. 33 (2012) 95 (https://doi.org/10.5012/bkcs.2012.33.1.95)

A. Mondal, S. Sarkar, D. Chopra, T. N. Guru Row, K. Krishna Rajak, Dalton Trans. (2004) 3244 (https://doi.org/10.1039/B408316D)

X. Wang, J. D. Ranford, J. J. Vittal, J. Mol. Struct. 796 (2006) 28 (https://doi.org/10.1016/j.molstruc.2006.03.090)

X. Wang, J. J. Vittal, Inorg. Chem. 42 (2003) 5135 (https://doi.org/10.1021/ic0344970)

A. M. Alam, M. Nethaji, M. Ray, Angew. Chem. Int. Ed. 42 (2003) 1940 (https://doi.org/10.1002/anie.200250591)

Md. A. Alam, M. Nethaji, M. Ray, Inorg. Chem. 44 (2005) 1302 (https://doi.org/10.1021/ic049145n)

B.-Y. Lou, D.-Q. Yuan, S.-Y. Gao, R.-H. Wang, Y. Xu, L. Han, M.-C. Hong, J. Mol. Struct. 707 (2004) 231 (https://doi.org/10.1016/j.molstruc.2004.07.025)

B.-Y. Lou, Y. Xu, D.-Q. Yuan, L. Han, M.-C. Hong, Acta Cryst. E 60 (2004) m522 (https://doi.org/ 0.1107/S1600536804007342)

B. Sreenivasulu, M. Vetrichelvan, F. Zhao, S. Gao, J. J. Vittal, Eur. J. Inorg. Chem. 2005 (2005) 4635 (https://doi.org/10.1002/ejic.200500638)

Z. Lü, D. Zhang, S. Gao, D. Zhu, Inorg. Chem. Commun. 8 (2005) 746 (https://doi.org/10.1016/j.inoche.2005.05.012)

M. Monroe, Molecular Weight Calculator for Windows, 2011, https://alchemistmatt.com/mwtwin.html.

S. Richter, S. Singh, D. Draca, A. Kate, A. Kumbhar, A. S. Kumbhar, D. Maksimovic-

-Ivanic, S. Mijatovic, P. Lönnecke, E. Hey-Hawkins, Dalton Trans. 45 (2016) 13114 (https://doi.org/10.1039/C6DT01782G)

L. I. Shevchenko, P. S. Pel’kis, M. O. Lozinskii, V. N. Kalinin, Ukr. Khim. Zh. 50 (1984) 301

Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Wroclaw, 1995–2023

R. C. Clark, J. S. Reid, Acta Cryst., A 51 (1995) 887 (https://doi.org/10.1107/S0108767395007367)

G. M. Sheldrick, Acta Cryst., C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

K. Putz, K. Brandenburg, Diamond Crystal and Molecular Structure Visualization, 2014, https://www.crystalimpact.de/diamond

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107 (https://doi.org/10.1093/jnci/82.13.1107)

V. Vichai, K. Kirtikara, Nat. Protoc. 1 (2006) 1112 (https://doi.org/10.1038/nprot.2006.179)

L. Useini, T. Komazec, M. Laube, P. Lönnecke, J. Schädlich, S. Mijatović, D. Maksimović-Ivanić, J. Pietzsch, E. Hey-Hawkins, Adv. Ther. 6 (2023) 2300117 (https://doi.org/10.1002/adtp.202300117)

I. Predarska, M. Saoud, I. Morgan, P. Lönnecke, G. N. Kaluđerović, E. Hey-Hawkins, Biomolecules 13 (2023) 595 (https://doi.org/10.3390/biom13040595)

Y. Zhang, Z. Bao, N. Lv, K. Chen, C. Zong, H. Yuan, Frontiers Chem. 8 (2020) 609 (https://doi.org/10.3389/fchem.2020.00609)

J. M. Rosenbaum, R. A. Cliff, M. L. Coleman, Anal. Chem. 72 (2000) 2261 (https://doi.org/10.1021/ac991297q)

A. J. Dempster, Nature 136 (1935) 65 (https://doi.org/10.1038/136065b0)

J. B. Creech, J. A. Baker, M. R. Handler, M. Bizzarro, Chem. Geol. 363 (2014) 293 (https://doi.org/10.1016/j.chemgeo.2013.11.009)

N. Pantelić, B. B. Zmejkovski, B. Kolundžija, M. Đ. Crnogorac, J. M. Vujić, B. Dojčinović, S. R. Trifunović, T. P. Stanojković, T. J. Sabo, G. N. Kaluđerović, J. Inorg. Biochem. 172 (2017) 55 (https://doi.org/10.1016/j.jinorgbio.2017.04.001)

G. N. Kaluđerović, H. Schmidt, C. Wagner, K. Merzweiler, D. Steinborn, Collect. Czech. Chem. Commun. 72 (2007) 560 (https://doi.org/10.1135/cccc20070560)

A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, Dalton Trans. (1984) 1349 (https://doi.org/10.1039/DT9840001349)

Y.-F. Liu, D.-F. Rong, H.-T. Xia, D.-Q. Wang, Acta Cryst., E 65 (2009) m1492 (https://doi.org/10.1107/S1600536809044997)

B. Zheng, H. Liu, J. Feng, J. Zhang, Appl. Organometal. Chem. 28 (2014) 372 (https://doi.org/10.1002/aoc.3138)

G. A. Jeffrey, An Introduction to Hydrogen Bonding, UK edition, Oxford University Press, New York, 1997

C. Vetter, C. Wagner, G. N. Kaluderović, R. Paschke, D. Steinborn, Inorg. Chim. Acta 362 (2009) 189 (https://doi.org/10.1016/j.ica.2008.03.085)

R. Lindner, G. N. Kaluđerović, R. Paschkec, C. Wagner, D. Steinborn, Polyhedron 27 (2008) 914 (https://doi.org/10.1016/j.poly.2007.11.020)

G. N. Kaluđerović, T. Krajnović, M. Momčilović, S. Stosic-Grujicic, S. Mijatović, D. Maksimović-Ivanić, E. Hey-Hawkins, J. Inorg. Biochem. 153 (2015) 315 (https://doi.org/10.1016/j.jinorgbio.2015.09.006)

X.-H. Yang, T. L. Sladek, X. Liu, B. R. Butler, C. J. Froelich, A. D. Thor, Cancer Res. 61 (2001) 348 (https://aacrjournals.org/cancerres/article/61/1/348/507421/Reconstitution-of-Caspase-3-Sensitizes-MCF-7?searchresult=1)

R. U. Jänicke, M. L. Sprengart, M. R. Wati, A. G. Porter, J. Biol. Chem. 273 (1998) 9357 (https://doi.org/10.1074/jbc.273.16.9357)

R. Uauy, M. Olivares, M. Gonzalez, Am. J. Clin. Nutr. 67 (1998) 952S (https://doi.org/10.1093/ajcn/67.5.952S)

V. C. Shanbhag, N. Gudekar, K. Jasmer, C. Papageorgiou, K. Singh, M. J. Petris, Biochim. Biophys. Acta Mol. Cell Res. 1868 (2021) 118893 (https://doi.org/10.1016/j.bbamcr.2020.118893).