Diorganotin(IV) complexes with hydroxamic acids derivatives of some histone deacetylases inhibitors Scientific paper

Main Article Content

Danijela Nikolić
Marija Genčić
Jelena Aksić
Niko Radulović
Dušan Dimić
Goran N Kaluđerović


Organotin(IV) compounds show great potential as antitumor metal­lodrugs with lower toxicity and higher antiproliferative activity. Histone deac­etylases (HDAC) inhibitors are characterised by high bioavailability and low toxicity. In this research, the two novel octahedral organotin(IV) complexes of physiologically active hydroxamate-based ligands, N-hydroxy-4-phenylbutan­amide (HL1) and N-hydroxy-2-propylpentanamide (HL2), have been prepared and characterized using FTIR, 1H-, 13C- and 119Sn-NMR spectroscopy. Part­ic­ular emphasis was put on the binding characteristics of ligands. The structures were additionally analysed by the density functional theory at B3LYP-D3BJ/6-311++G(d,p)(H,C,N,O)/LanL2DZ(Sn) level. The theoretical IR and NMR spectra were compared to the spectroscopic data, and it was concluded that the predicted structures described well the experimental ones. The stability of different isomers of HL1 and HL2 was assessed by the natural bond orbital analysis, and the importance of intramolecular hydrogen bond was outlined. The interactions between donor atoms and Sn were investigated and correlated with the changes in chemical shift and the wavenumbers of characteristic vib­rations.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
D. . Nikolić, M. Genčić, J. Aksić, N. Radulović, D. Dimić, and G. N. Kaluđerović, “Diorganotin(IV) complexes with hydroxamic acids derivatives of some histone deacetylases inhibitors: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1319–1334, Dec. 2023.
Theme issue honoring Professor Vukadin Leovac's 80th birthday

Funding data


J. Chen, D. Faller, R. Spanjaard, Curr. Cancer Drug Targets 3 (2003) 219 (https://doi.org/10.2174/1568009033481994)

G. Li, Y. Tian, W.-G. Zhu, Front. Cell Dev. Biol. 8 (2020) (https://doi.org/10.3389/fcell.2020.576946)

J. L. Tischler, B. Abuaita, S. C. Cuthpert, C. Fage, K. Murphy, A. Saxe, E. B. Furr, J. Hedrick, J. Meyers, D. Snare, A. R. Zand, J. Enzyme Inhib. Med. Chem. 23 (2008) 549 (https://doi.org/10.1080/14756360701715703)

D. M. Fass, R. Shah, B. Ghosh, K. Hennig, S. Norton, W.-N. Zhao, S. A. Reis, P. S. Klein, R. Mazitschek, R. L. Maglathlin, T. A. Lewis, S. J. Haggarty, ACS Med. Chem. Lett. 2 (2011) 39 (https://doi.org/10.1021/ml1001954)

J. Devi, M. Yadav, D. K. Jindal, D. Kumar, Y. Poornachandra, Appl. Organomet. Chem. 33 (2019) 1 (https://doi.org/10.1002/aoc.5154)

S. N. Syed Annuar, N. F. Kamaludin, N. Awang, K. M. Chan, Front. Chem. 9 (2021) (https://doi.org/10.3389/fchem.2021.657599)

S. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253 (2009) 235 (https://doi.org/10.1016/j.ccr.2007.12.026)

X. Shang, E. C. B. A. Alegria, M. F. C. Guedes da Silva, M. L. Kuznetsov, Q. Li, A. J. L. Pombeiro, J. Inorg. Biochem. 117 (2012) 147 (https://doi.org/10.1016/j.jinorgbio.2012.08.019)

S. Kumari, N. Sharma, J. Coord. Chem. 72 (2019) 584 (https://doi.org/10.1080/00958972.2019.1573993)

V. K. Choudhary, A. K. Bhatt, N. Sharma, J. Coord. Chem. 72 (2019) 372 (https://doi.org/10.1080/00958972.2019.1573993)

N. Naoom, E. Yousif, D. S. Ahmed, B. M. Kariuki, G. A. El-Hiti, Polymers 14 (2022) 4590 (https://doi.org/10.3390/polym14214590)

R. R. Arraq, A. G. Hadi, D. A. Ahmed, G. A. El-Hiti, B. M. Kariuki, A. A. Husain, M. Bufaroosha, E. Yousif, Polymers 15 (2023) 550 (https://doi.org/10.3390/polym15030550)

R. Haddad, S. Khadum, M. Ali, A. Majeed, A. Husain, M. Bufaroosha, D. Ahmed, E. Yousif, Bull. Chem. Soc. Ethiop. 37 (2023) 771 (https://dx.doi.org/10.4314/bcse.v37i3.18)

M. S. Genčić, N. M. Stojanović, M. Z. Mladenović, N. S. Radulović, Neurochem. Int. 161 (2022) 105433 (https://doi.org/10.1016/j.neuint.2022.105433)

U. Gravemann, J. Volland, H. Nau, Neurotoxicol. Teratol. 30 (2008) 390 (https://doi.org/10.1016/j.ntt.2008.03.060)


A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

A.D. Becke, E.R. Johnson, J. Chem. Phys. 123 (2005) 154101 (https://doi.org/10.1063/1.2065267)

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1103/10.1063/1.456153)

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299 (https://doi.org/10.1063/1.448975)

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 270 (https://doi.org/10.1063/1.448799)

Gauss View, Version 5, Semichem Inc., Shawnee, KS, 2009

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 113 (2009) 6378 (https://doi.org/10.1021/jp810292n)

J. A. Bohmann, F. Weinhold, T. C. Farrar, J. Chem. Phys. 107 (1997) 1173 (https://doi.org/10.1063/1.474464)

J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211 (https://doi.org/10.1021/ja00544a007)

D. A. Brown, W. K. Glass, R. Mageswaran, S. A. Mohammed, Magn. Reson. Chem. 29 (1991) 40 (https://doi.org/10.1002/mrc.1260290109)

B. García, S. Ibeas, J. M. Leal, F. Secco, M. Venturini, M. L. Senent, A. Niño, C. Muñoz, Inorg. Chem. 44 (2005) 2908 (https://doi.org/10.1021/ic049438g)

D. A. Brown, R. A. Coogan, N. J. Fitzpatrick, W. K. Glass, D. E. Abukshima, L. Shiels, M. Ahlgrén, K. Smolander, T. T. Pakkanen, T. A. Pakkanen, M. Peräkylä, J. Chem. Soc., Perkin Trans. 2 (1996) 2673 (https://doi.org/10.1039/P29960002673)

J. Adeyemi, D. Onwudiwe, Molecules 23 (2018) 2571 (https://doi.org/10.3390/molecules23102571)

D. S. Dimić, Z. S. Marković, L. Saso, E. H. Avdović, J. R. Đorović, I. P. Petrović, M. J. Stanisavljević, D. D. Stevanović, I. Potočňák, E. Samoľová, S. R. Trifunović, J. M. Dimitrić Marković, Oxid. Med. Cell. Longev. 2019 (2019) 2069250 (https://doi.org/10.1155/2019/2069250)

T. Eichhorn, F. Kolbe, S. Mišić, D. Dimić, I. Morgan, M. Saoud, D. Milenković, Z. Marković, T. Rüffer, J. Dimitrić Marković, G. N. Kaluđerović, Int. J. Mol. Sci. 24 (2023) (https://doi.org/10.3390/ijms24010689).