Thermophysical investigation of glycol ethers in mannitol solutions at various temperatures Scientific paper

Main Article Content

Nabaparna Chakraborty
https://orcid.org/0000-0003-3891-0408
Priya Thakur
Kailash Chandra Juglan
https://orcid.org/0000-0002-8753-4843
Abrar Hussain Syed

Abstract

Ultrasonic analysis can be very helpful to comprehend the molecular dynamics and interactions in liquid systems. Employing the Anton-Paar (DSA 5000 M) at concentrations and 0.1 MPa, sound speed as well as density of glycol ethers, i.e., phenoxyethanol (PE) and butoxyethanol (BE) in solutions of a well-known sugar alcohol (d-mannitol), were measured at 288.15–303.15 K. A variety of advanced acoustic-thermodynamic parameters, including apparent molar parameters, partial molar parameters and transfer molar properties, were estimated using the experimentally attained the velocity and density values. These derived values are used to express the interactions between solutes and their solvents. The propensity of the solute to generate or destroy structures in a solvent is also a subject of research. Analysis was done on the interactions between the molecules in the ternary mixture of d-mannitol and glycol ethers in aqueous medium.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Chakraborty, P. Thakur, K. C. Juglan, and A. H. Syed, “Thermophysical investigation of glycol ethers in mannitol solutions at various temperatures: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 11, pp. 1489–1506, Dec. 2024.
Section
Thermodynamics

References

M. S. Raman, M. Kesavan, K. Senthilkumar, V. Ponnuswamy, J. Mol. Liq. 202 (2015) 115 (https://doi.org/10.1016/j.molliq.2014.12.014)

S. Emiliani, M. V. Bergh, A. S. Vannin, J. Biranane, Y. Englert, Hum. Reprod. 15 (2000) 905 (https://doi.org/10.1093/humrep/15.4.905)

C. Zhu, X. Ren, Y. Ma, J. Chem. Eng. Data 62 (2017) 477 (https://doi.org/10.1021/acs.jced.6b00766)

N. Chakraborty, K. C. Juglan, H. Kumar, J. Chem. Thermodyn. 154 (2021) 106326 (https://doi.org/10.1016/j.jct.2020.106326)

A. Ali, P. Bidhuri, S. Uzair, Indian J. Phys. 88(7) (2014) 715 (https://doi.org/10.1007/s12648-014-0461-2)

N. Chakraborty, K. C. Juglan, H. Kumar, J. Mol. Liq. 337 (2021) 116605 (https://doi.org/10.1016/j.molliq.2021.116605)

H. Kumar, M. Singla, R. Jindal, Monatsh. Chem. 145 (2014) 1063 (https://doi.org/10.1007/s00706-014-1183-z)

P. Pradhan, R.S. Sah, M. N. Roy, J. Mol. Liq. 144 (2009) 149 (https://doi.org/10.1016/j.molliq.2008.11.001)

S. K. Lomesh, M. Bala, D. Kumar, J. Mol. Liq. 289 (2019) 109479 (https://doi.org/10.1016/j.molliq.2018.08.034)

J. Wawer, J. Krakowiak, W. Grzybkowski, J. Chem. Thermodyn. 40 (2008) 1193 (https://doi.org/10.1016/j.jct.2008.04.008)

R. Rani, A. Kumar, T. Sharma, T. Sharma, R. K. Bamezai, J. Chem. Thermodyn. 135 (2019) 260 (https://doi.org/10.1016/j.jct.2019.03.039)

H. Zarei, S. M. Asl, Fluid Phase Equilib. 457 (2018) 52 (https://doi.org/10.1016/j.fluid.2017.10.027)

X. Jiang, C. Zhu, Y. Ma, J. Chem. Eng. Data 58 (2013) 2970 (https://doi.org/10.1021/je400395u)

N. G. Tsierkezos, I. E. Molinou, J. Chem. Eng. Data 43 (1998) 989 (https://doi.org/10.1021/je9800914)

I. Gheorghe, C. Stoicescu, F. Sirbu, J. Mol. Liq. 218 (2016) 515 (https://doi.org/10.1016/j.molliq.2016.02.033)

B. Sinha, A. Sarkar, P. K. Roy, D. Brahman, Int. J. Thermophys. 32 (2011) 2062 (https://doi.org/10.1007/s10765-011-1060-5)

M. Liu, L. L. Wang, G. Q. L. N. Dong, D. Z. Sun, L. Y. Zhu, Y. Y. Di, J. Chem. Thermodyn. 43 (2011) 983 (https://doi.org/10.1016/j.jct.2011.02.005)

M. Scognamiglio, L. Jones, C. S. Letizia, A. M. Api, Food Chem. Toxicol. 50 (2012) 244 (https://doi.org/10.1016/j.fct.2011.10.030)

I. Lowe, J. Southern, Lett. App. Microbiol. 18 (1994) 115 (https://doi.org/10.1111/j.1472-765X.1994.tb00820.x)

M. S. Raman, G. Amrithaganesan, Indian J. Phys. 78(12) (2004) 1329

D. Chawla, N. Chakraborty, K. C. Juglan, H. Kumar, Chem. Papers 75 (2021) 1497 (https://doi.org/10.1007/s11696-020-01403-y)

P. K. Banipal, S. Arti, T. S. Banipal. J Chem. Eng. Data 60 (2015) 1023 (https://doi.org/10.1021/je500886a)

I. Mozo, I. G. de la Fuente, J. A. Gonzalez, J. C. Cobos, N. Riesco, J. Chem. Eng. Data 53 (2008) 1404 (https://doi.org/10.1021/je8000975)

H. Makhlauf, N. Munoz-Rujas, F. Aguilar, B. Belhachemi, E. A. Montero, I. Bahadur, L. Negadi, J Chem Thermodyn. 128 (2019) 394 (https://doi.org/10.1016/j.jct.2018.08.029)

X. U. Wang, R. Fu, Y. Gua, L. Rusin, J. Mol. Liq. 197 (2014) 73 (https://doi.org/10.1016/j.molliq.2014.04.028)

J. G. Kirkwood, Chem. Rev. 24 (1939) 233 (https://doi.org/10.1021/cr60078a004)

Z. Yan, J. J. Wang, H. Zheng, D. Liu, J. Solut. Chem. 27 (1998) 473 (https://doi.org/10.1023/A:1022608906767)

H. L. Friedman, C. Krishnan, J. Solut. Chem. 2 (1973) 119 (https://doi.org/10.1007/BF00651969)

S. Li, W. Sang, R. Lin, J. Chem. Thermodyn. 34 (2002) 1761 (https://doi.org/10.1016/S0021-9614(02)00125-8)

A. Salabat, L. Shamshiri, F. Sahrakr, J. Mol. Liq. 118 (2005) 67 (https://doi.org/10.1016/j.molliq.2004.07.014)

A. K. Mishra, J. C. Ahluwalia, J. Phys. Chem. 88 (1984) 86 (https://doi.org/10.1021/j150645a021)

L. G. Hepler, Can. J Chem. 47 (1969) 4613 (https://doi.org/10.1139/v69-762)

B. Naseem, I. Arif, M. A. Jamal, Arab. J. Chem. 14 (2021) 103405 (https://doi.org/10.1016/j.arabjc.2021.103405)

A. K. Nain, R. Pal, J. Chem. Thermodyn. 60 (2013) 98 (https://doi.org/10.1016/j.jct.2013.01.008)

R. A. Miranda‐ Quintana, J. Smiatek, ChemPhysChem 21 (2020) 2605 (https://doi.org/10.1002/cphc.202000644)

Z. Yan, X. Wen, Y. Kang, S. Zhang, S. Wu, J. Chem. Thermodyn. 93 (2016) 172 (https://doi.org/10.1016/j.jct.2015.10.004)

F. J. Millero, in Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes, R. A. Horne, Ed., Wiley, New York, 1972

W. G. McMillan, Jr., J. E. Mayer, J. Chem. Phys. 13 (1945) 276 (https://doi.org/10.1063/1.1724036)

C. V. Krishnan, H. L. Friedman, J. Solut. Chem. 2 (1973) 37 (https://doi.org/10.1007/BF00645870)

F. Franks, M. Pedley, D. S. Reid, J. Chem. Soc., Faraday Trans. 1 72 (1976) 359 (https://doi.org/10.1039/F19767200359)

N. Chakraborty, K. C. Juglan, H. Kumar, J. Chem. Thermodyn. 163 (2021) 106584 (https://doi.org/10.1016/j.jct.2021.106584)

R. K. Wadi, P. Ramasami, J. Chem. Soc., Faraday Trans. 93 (1997) 243 (https://doi.org/10.1039/A604650I)

N. Chakraborty, P. Thakur, K. C. Juglan, E3S Web Conf. 453 (2023) 01051 (https://doi.org/10.1051/e3sconf/202345301051).