Thermophysical investigation of glycol ethers in mannitol solutions at various temperatures
Main Article Content
Abstract
Ultrasonic analysis can be very helpful to comprehend the molecular dynamics and interactions in liquid systems. Employing the Anton-Paar (DSA 5000 M) at concentrations and 0.1 MPa, sound speed as well as density of glycol ethers, i.e., phenoxyethanol (PE) and butoxyethanol (BE) in solutions of a well-known sugar alcohol (d-mannitol) were measured at 288.15-303.15 K. A variety of advanced acoustic-thermodynamic parameters, including apparent molar parameters, partial molar parameters and transfer molar properties, were estimated using the experimentally attained the velocity and density values. These derived values are used to express the interactions between solutes and their solvents. The propensity of the solute to generate or destroy structures in a solvent is also a subject of research. Analysis was done on the interactions between the molecules in the ternary mixture of d-mannitol and glycol ethers in aqueous medium.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. S. Raman, M. Kesavan, K. Senthilkumar, V. Ponnuswamy, J. Mol. Liq. 202 (2015) 115 (https://doi.org/10.1016/j.molliq.2014.12.014)
S. Emiliani, M. V. Bergh, A. S. Vannin, J. Biranane, Y. Englert, Hum. Reprod. 15 (2000) 905 (https://doi.org/10.1093/humrep/15.4.905)
C. Zhu, X. Ren, Y. Ma, J. Chem. Eng. Data 62 (2017) 477 (https://doi.org/10.1021/acs.jced.6b00766)
N. Chakraborty, K. C. Juglan, H. Kumar, J. Chem. Thermodyn. 154 (2021) 106326 (https://doi.org/10.1016/j.jct.2020.106326)
A. Ali, P. Bidhuri, S. Uzair, Indian J Phys. 88(7) (2014) 715 (https://doi.org/10.1007/s12648-014-0461-2)
N. Chakraborty, K. C. Juglan, H. Kumar, J. Mol. Liq. 337 (2021) 116605 (https://doi.org/10.1016/j.molliq.2021.116605)
H. Kumar, M. Singla, R. Jindal, Monatsh. Chem. 145 (2014) 1063 (https://doi.org/10.1007/s00706-014-1183-z)
P. Pradhan, R.S. Sah, M. N. Roy, J. Mol. Liq. 144 (2009) 149 (https://doi.org/10.1016/j.molliq.2008.11.001)
S. K. Lomesh, M. Bala, D. Kumar, J. Mol. Liq. 289 (2019) 109479 (https://doi.org/10.1016/j.molliq.2018.08.034)
J. Wawer, J. Krakowiak, W. Grzybkowski, J. Chem. Thermodyn. 40 (2008) 1193 (https://doi.org/10.1016/j.jct.2008.04.008)
R. Rani, A. Kumar, T. Sharma, T. Sharma, R. K. Bamezai, J. Chem. Thermodyn. 135 (2019) 260 (https://doi.org/10.1016/j.jct.2019.03.039)
H. Zarei, S. M. Asl, Fluid Phase Equilib. 457 (2018) 52, (https://doi.org/10.1016/j.fluid.2017.10.027)
X. Jiang, C. Zhu, Y. Ma, J. Chem. Eng. Data 58 (2013) 2970 (https://doi.org/10.1021/je400395u)
N. G. Tsierkezos, I. E. Molinou, J. Chem. Eng. Data 43 (1998) 989 (https://doi.org/10.1021/je9800914)
I. Gheorghe, C. Stoicescu, F. Sirbu, J Mol Liq. 218 (2016) 515 (https://doi.org/10.1016/j.molliq.2016.02.033)
B. Sinha, A. Sarkar, P. K. Roy, D. Brahman, Int. J. Thermophys. 32 (2011) 2062 (https://doi.org/10.1007/s10765-011-1060-5)
M. Liu, L. L. Wang, G. Q. L. N. Dong, D. Z. Sun, L. Y. Zhu, Y. Y. Di, J. Chem. Thermodyn. 43 (2011) 983 (https://doi.org/10.1016/j.jct.2011.02.005)
M. Scognamiglio, L. Jones, C. S. Letizia, A. M. Api, Food Chem. Toxicol. 50 (2012) 244 (https://doi.org/10.1016/j.fct.2011.10.030)
I. Lowe, J. Southern, Lett. App. Microbiol., 18 (1994) 115 (https://doi.org/10.1111/j.1472-765X.1994.tb00820.x)
M. S. Raman, G. Amrithaganesan, Indian J. Phy. 78(12) (2004) 1329
D. Chawla, N. Chakraborty, K. C. Juglan, H. Kumar, Chem. Pap., 75 (2021) 1497, (https://doi.org/10.1007/s11696-020-01403-y)
P. K. Banipal, S. Arti, T. S. Banipal. J Chem. Eng. Data 60 (2015) 1023 (https://doi.org/10.1021/je500886a)
I. Mozo, I. G. de la Fuente, J. A. Gonzalez, J. C. Cobos, N. Riesco, J. Chem. Eng. Data 53 (2008) 1404 (https://doi.org/10.1021/je8000975)
H. Makhlauf, N. Munoz-Rujas, F. Aguilar, B. Belhachemi, E. A. Montero, I. Bahadur, L. Negadi, J Chem Thermodyn. 128 (2019) 394 (https://doi.org/10.1016/j.jct.2018.08.029)
X. U. Wang, R. Fu, Y. Gua, L. Rusin, J. Mol. Liq. 197 (2014) 73 (https://doi.org/10.1016/j.molliq.2014.04.028)
J. G. Kirkwood, Chem. Rev. 24 (1939) 233 (https://doi.org/10.1021/cr60078a004)
Z. Yan, J. J. Wang, H. Zheng, D. Liu, J. Solution Chem. 27 (1998) 473 (https://doi.org/10.1023/A:1022608906767)
H. L. Friedman, C. Krishnan, J. Solution Chem. 2 (1973) 119 (https://doi.org/10.1007/BF00651969)
S. Li, W. Sang, R. Lin, J. Chem. Thermodyn. 34 (2002) 1761 (https://doi.org/10.1016/S0021-9614(02)00125-8)
A. Salabat, L. Shamshiri, F. Sahrakr, J. Mol. Liq. 118, (2005) 67 (https://doi.org/10.1016/j.molliq.2004.07.014)
A. K. Mishra, J. C. Ahluwalia, J Phys Chem. 88(1) (1984) 86 (https://doi.org/10.1021/j150645a021)
L. G. Hepler, Can. J Chem. 47 (1969) 4613 (https://doi.org/10.1139/v69-762)
B. Naseem, I. Arif, M. A. Jamal, Arab. J. Chem. 14(11) (2021) 103405 (https://doi.org/10.1016/j.arabjc.2021.103405)
A. K. Nain, R. Pal, J. Chem. Thermodyn. 60 (2013) 98 (https://doi.org/10.1016/j.jct.2013.01.008)
R. A. Miranda‐ Quintana, J. Smiatek, ChemPhysChem. 21(23) (2020) 2605 (https://doi.org/10.1002/cphc.202000644)
Z. Yan, X. Wen, Y. Kang, S. Zhang, S. Wu, J. Chem. Thermodyn. 93 (2016) 172 (https://doi.org/10.1016/j.jct.2015.10.004)
F. J. Millero in Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes, Horne, R.A. (ed.). Wiley: New York, (1972).
W. G. Jr. McMillan, J. E. Mayer, J. Chem. Phys. 13 (1945) 276 (https://doi.org/10.1063/1.1724036)
C. V. Krishnan, H. L. Friedman, J. Solution Chem. 2 (1973) 37 (https://doi.org/10.1007/BF00645870)
F. Franks, M. Pedley, D. S. Reid, J. Chem. Soc., Faraday Trans. 1 72 (1976) 359 (https://doi.org/10.1039/F19767200359)
N. Chakraborty, K. C. Juglan, H. Kumar, J. Chem. Thermodyn. 163 (2021) 106584 (https://doi.org/10.1016/j.jct.2021.106584)
R. K. Wadi, P. Ramasami, J. Chem. Soc., Faraday Trans. 93 (1997) 243 (https://doi.org/10.1039/A604650I)
N. Chakraborty, P. Thakur, K. C. Juglan, E3S Web Conf. 453 (2023) 01051 (https://doi.org/10.1051/e3sconf/202345301051)