Ultrasonic and spectroscopic investigations of molecular interactions in binary mixture of PEG-400 and DMSO at different temperatures Scientific paper

Main Article Content

Monika Dhiman
https://orcid.org/0000-0002-7724-5562
Arun Upmanyu
https://orcid.org/0000-0003-4273-7046
Devinder Pal Singh
https://orcid.org/0000-0002-2962-9967
Kailash Chandra Juglan
https://orcid.org/0000-0002-8753-4843

Abstract

In the present study, the ultrasonic velocity and density data for the binary mixture of polyethylene glycol (PEG)-400 and dimethyl sulfoxide (DMSO), at various concentrations and different temperatures (T, 288.15, 298.15 and 308.15 K), have been measured and further apllied to determine several physical parameters such as adiabatic and isothermal compressibility, intermolecular free length, internal pressure and free volume. The excess values of these parameters have also been computed and fitted with the Red­lich–Kister (R–K) polynomial equation. The nature, type, and strength of inter­molecular interactions present within the PEG-400 + DMSO mixture have been explained based on the sign and magnitude of excess values. Furthermore, par­tial molar volumes, excess partial molar volumes, apparent molar volumes and apparent molar volumes at infinite dilution have also been determined to inves­tigate the solute–solvent interactions. Various mixing rules such as the ideal mixing rule (Uim), Nomoto relation (UN), impedance dependence relation (UZ), Junjie relation (UJ), van Deal–Vangeel relation (UV) and collision factor theory (UCFT) are employed to compute the ultrasonic velocity and compared with the experimental one. Among these relations, the Nomoto and Junjie relations are found to be most suitable for the given mixture. In addition to it, the present system has also been examined using Fourier transform infra-red (FTIR) and UV–Vis spectroscopic techniques. The change in intensity and shift in peak position in the FTIR and UV–Vis spectra of the PEG-400 + DMSO mixture are used to confirm the intermolecular hydrogen bonding in the given system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Dhiman, A. Upmanyu, D. P. Singh, and K. C. Juglan, “Ultrasonic and spectroscopic investigations of molecular interactions in binary mixture of PEG-400 and DMSO at different temperatures: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 10, pp. 1363–1385, Nov. 2024.
Section
Polymers

References

P. Malik, G. Chauhan, P. Kumar, A. Deep, Liq. Cryst. 49 (2022) 2008 (https://doi.org/10.1080/02678292.2022.2094006)

P. Kumar, V. Sharma, P. Malik, K. K. Raina, J. Mol. Struct. 1196 (2019) 866 (https://doi.org/10.1016/j.molstruc.2019.06.045)

S. Tian, Y. Hou, W. Wu, S. Ren, J. Qian, J. Hazard. Mater. 278 (2014) 409 (https://doi.org/10.1016/j.jhazmat.2014.06.037)

K. T. Lee, A. R. Mohamed, S. Bhatia, K. H. Chu, J. Chem. Eng. 114 (2005) 171 (https://doi.org/10.1016/j.cej.2005.08.020)

T. Zhao, J. Zhang, B. Guo, F. Zhang, F. Sha, X. Xie, X. Wei, J. Mol. Liq. 207 (2015) 315 (https://doi.org/10.1016/j.molliq.2015.04.001)

K. Zhang, J. Yang, X. Yu, J. Zhang, X. Wei, J. Chem. Eng. Data 56 (2011) 3083 (https://doi.org/10.1021/je200148u)

J. Rodríguez-Sevilla, M. Álvarez, G. Limiñana, M. C. Díaz, J. Chem. Eng. Data 47 (2002) 1339 (https://doi.org/10.1021/je015538e)

D. Nagel, R. de Kermadec, H. G. Lintz, C. Roizard, F. Lapicque, Chem. Eng. Sci. 57 (2002) 4883 (https://doi.org/10.1016/S0009-2509(02)00283-X)

F. Han, J. Zhang, G. Chen, X. Wei, J. Chem. Eng. Data 53 (2008) 2598 (https://doi.org/10.1021/je800464t)

S. Trivedi, C. Bhanot, S. Pandey, J. Chem. Thermodyn. 42 (2010) 1367 (https://doi.org/10.1016/j.jct.2010.06.001)

A. Upmanyu, M. Dhiman, D. P. Singh, H. Kumar, J. Mol. Liq. 334 (2021) 115939 (https://doi.org/10.1016/j.molliq.2021.115939)

B. V. Kumar Naidu, K. C. Rao, M. C. S. Subha, J. Chem. Eng. Data 47 (2002) 379 (https://doi.org/10.1021/je0101395)

M. Dhiman, K. Singh, J. Kaushal, A. Upmanyu, D. P. Singh, Acta Acust. United Acust. 105 (2019) 743 (https://doi.org/10.3813/AAA.919354)

M. Rani, S. Gahlyan, A. Gaur, S. Maken, Chin. J. Chem. Eng. 23 (2015) 689 (https://doi.org/10.1016/j.cjche.2014.12.003)

P. Kaur, N. Chakraborty, K. C. Juglan, H. Kumar, J. Mol. Liq. 315 (2020) 113763 (https://doi.org/10.1016/j.molliq.2020.113763)

D. P. Gupta, A. Upmanyu, M. Dhiman, D. P. Singh, Estimation of ultrasonic velocity and viscosity of polymer solutions of HTPB+ chlorobenzene at different temperatures, AIP Conf. Proc., AIP Publishing, Melville, NY, 2022 (https://doi.org/10.1063/5.0080974)

A. Ali, A. K. Nain, V. K. Sharma, S. Ahmad, Phys. Chem. Liq. 42 (2004) 375 (https://doi.org/10.1080/00319100410001679882)

M. Umadevi, R. Kesavasamy, K. Rathina, R. Mahalakshmi. J. Mol. Liq. 219 (2016) 820 (https://doi.org/10.1016/j.molliq.2016.03.085)

L. Ma, F. Sha, X. Qiao, Q. Li, J. Zhang, Chin. J. Chem. Eng. 25 (2017) 1249 (https://doi.org/10.1016/j.cjche.2017.01.001)

G. Arivazhagan, A. Elangovan, R. Shanmugam, R. Vijayalakshmi, N. K. Karthick, J. Mol. Liq. 214 (2016) 357 (https://doi.org/10.1016/j.molliq.2015.10.062)

L. M. Madikizela, P. S. Mdluli, L. Chimuka, React. Funct. Polym. 103 (2016) 33 (https://doi.org/10.1016/j.reactfunctpolym.2016.03.017)

T. S. Krishna, K. Raju, M. Gowrisankar, A. K. Nain, B. Munibhadrayya, J. Mol. Liq. 216 (2016) 484 (https://doi.org/10.1016/j.molliq.2016.01.085)

A. Awasthi, J. P. Shukla, Ultrasonics 41 (2003) 477 (https://doi.org/10.1016/S0041-624X(03)00127-6)

P. Malik, S. Kumar, Khushboo, A. Upmanyu, P. Kumar, P. Malik, Liq. Cryst. 49 (2022) 1604 (https://doi.org/10.1080/02678292.2022.2102684)

O. E.-A. A. Adam, A. A. Hassan, Phys. Chem. Liq. 56 (2018) 55 (https://doi.org/10.1080/00319104.2017.1292424)

N. Chaudhary, A. Kumar Nain, Phys. Chem. Liq. 58 (2020) 736 (https://doi.org/10.1080/00319104.2019.1636378)

M. T. Zafarani-Moattar, N. Tohidifar, J. Chem. Eng. Data 51 (2006) 1769 (https://doi.org/10.1021/je0601715)

M. T. Zafarani-Moattar, N. Tohidifar, J. Chem. Eng. Data 53 (2008) 785 (https://doi.org/10.1021/je700651e)

H. Patel, Z. S. Vaid, U. U. More, S. P. Ijardar, N. I. Malek, J. Chem. Thermodyn. 99 (2016) 40 (https://doi.org/10.1016/j.jct.2016.02.025)

F. M. Sannaningannavar, B. S. Navati, N. H. Ayachit, J. Therm. Anal. Calorim. 112 (2013) 1573 (https://doi.org/10.1007/s10973-012-2724-5)

J. G. Baragi, M. I. Aralaguppi, T. M. Aminabhavi, M. Y. Kariduraganavar, A. S. Kittur, J. Chem. Eng. Data 50 (2005) 910 (https://doi.org/10.1021/je049610v)

S. Baluja, R. M. Talaviya, J. Chem. Eng. Data 61 (2016) 1431 (https://doi.org/10.1021/acs.jced.5b00627)

V. K. Syal, S. Chauhan, R. Gautam, Ultrason. 36 (1998) 619 (https://doi.org/10.1016/S0041-624X(97)00104-2)

D. Keshapolla, R. L. Gardas, Fluid Phase Equilib. 383 (2014) 32 (https://doi.org/10.1016/j.fluid.2014.09.022)

T. Zhao, Q. Xu, J. Xiao, X. Wei, J. Chem. Eng. Data 60 (2015) 2135 (https://doi.org/10.1021/acs.jced.5b00209)

A. Ali, F. Nabi, J. Dispers. Sci. Technol. 31 (2010) 1326 (https://doi.org/10.1080/01932690903227469)

H. Wang, W. Liu, J. Huang, J. Chem. Thermodyn. 36 (2004) 743 (https://doi.org/10.1016/j.jct.2004.04.004)

R. K. Shukla, S. N. Dixit, P. Jain, P. Mishra, S. Sharma, Orbital-Electron. J. Chem. 2 (2011) 356 (https://periodicos.ufms.br/index.php/orbital/article/view/17980/12479)

J. C. De La Torre, Ann. N. Y. Acad. Sci. 411 (1983) 293 (https://doi.org/10.1111/j.1749-6632.1983.tb47311.x)

M. T. Zafarani-Moattar, H. Shekaari, J. Chem. Thermodyn. 38 (2006) 624 (https://doi.org/10.1016/j.jct.2005.07.018)

A. Ali, A. K. Nain, D. Chand, R. Ahmad, Bull. Chem. Soc. Jpn. 79 (2006) 702 (https://doi.org/10.1246/bcsj.79.702)

J. Krakowiak, D. Bobicz, W. Grzybkowski, J. Mol. Liq. 88 (2000) 197 (https://doi.org/10.1016/S0167-7322(00)00154-9)

H. Shekaari, M. T. Zafarani-Moattar, Int. J. Thermophys. 29 (2008) 534 (https://doi.org/10.1007/s10765-008-0395-z)

S. R. Dandwate, S. B. Deshmukh, J. Curr. Pharma Res. 10 (2020) 3716 (ISSN-2230-7842 CODEN-CPRUE6, www.jcpronline.in/)

U. R. Kapadi, S. K. Chavan, O. S. Yemul, J. Chem. Eng. Data 42 (1997) 548 (https://doi.org/10.1021/je960216+)

G. Ritzoulis, Can. J. Chem. 67 (1989) 1105 (https://doi.org/10.1139/v89-166)

M. A. Saleh, O. Ahmed, M. S. Ahmed, J. Mol. Liq. 115 (2004) 41 (https://doi.org/10.1016/j.molliq.2003.12.021)

S. B. Aznarez, L. Mussari, M. A. Postigo, J. Chem. Eng. Data 38 (1993) 270 (https://doi.org/10.1021/je00010a022)

S. Parveen, D. Shukla, S. Singh, K. P. Singh, M. Gupta, J. P. Shukla, Appl. Acoust. 70 (2009) 507 (https://doi.org/10.1016/j.apacoust.2008.05.008)

B. Nagarjun, A. V. Sarma, G. R. Rao, C. Rambabu, J. Thermodyn. 2013 (2013) 285796 (https://doi.org/10.1155/2013/285796)

A. Zhu, J. Wang, R. Liu, J. Chem. Thermodyn. 43 (2011) 796 (https://doi.org/10.1016/j.jct.2010.12.027)

A. Ali, A. K. Nain, V. K. Sharma, S. Ahmad, Phys. Chem. Liq. 42 (2004) 375 (https://doi.org/10.1080/00319100410001679882)

P. R. Bevington, D. K. Robinson, Data reduction and error analysis for the physical sciences, McGraw-Hill, New York, 1969, pp. 235–242 (ISBN 0-07-247227-8)

M. Dhiman, K. Singh, D. P. Gupta, D. P. Singh, A. Upmanyu, Study of excess acoustical and thermo-dynamical parameters of binary solutions of polypropylene glycol-400 and

n-alkanols at 303 K, AIP Conf. Proc., AIP Publishing, Melville, NY, 2020 (https://doi.org/10.1063/5.0001107)

B. Thanuja, G. Nithya, C. C. Kanagam, Ultrason. Sonochem. 19 (2012) 1213 (https://doi.org/10.1016/j.ultsonch.2012.03.006)

A. Awasthi, A. Awasthi, Phys. Chem. Liq. 51 (2013) 112 (https://doi.org/10.1080/00319104.2012.690569)

G. V Rao, A. V. Sarma, D. Ramachandran, C. Rambabu, Ind. J. Pure App. Phys. 42 (2004) 820 (http://nopr.niscpr.res.in/handle/123456789/8851)

S. F. Babavali, D. Punyaseshudu, K. Narendra, C. S. Yesaswi, C. Srinivasu, J. Mol. Liq. 224 (2016) 47 (https://doi.org/10.1016/j.molliq.2016.09.079)

M. Dhiman, A. Upmanyu, P. Kumar, D. P. Singh, Karbala Int. J. Mod. Sci. 8 (2022) 703 (https://doi.org/10.33640/2405-609X.3270)

S. Gahlyan, M. Rani, S. Maken, J. Mol. Liq. 199 (2014) 42 (https://doi.org/10.1016/j.molliq.2014.08.011)

H. E. Hoga, R. B. Torres, J. Chem. Thermodyn. 43 (2011) 1104 (https://doi.org/10.1016/j.jct.2011.02.018).

Most read articles by the same author(s)