Thermal behavior of polymeric nickel(II) oxalate complex obtained through nickel(II) nitrate/ethylene glycol reaction Scientific paper
Main Article Content
Abstract
This paper describes the analysis of the thermal decomposition of polymeric nickel (II) oxalate complex, a homopolynuclear coordination compound having the formula [Ni(C2O4)(H2O)2]n×xnH2O. The thermolysis was conducted in both dynamic oxidative and inert atmospheres by simultaneously applying thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA). The proposed decomposition mechanism was confirmed using evolved gas analysis (EGA) technique via the Fourier transform infrared spectroscopy (FTIR) of the gaseous decomposition products. The solid-state decomposition products formed during heating were investigated by chemical analysis, FTIR, Raman spectroscopy and X-ray diffraction (XRD). The structure, morphology and properties of the final decomposition products were characterized by XRD, FTIR, energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). These analyses show that the final decomposition product in oxidative atmosphere was nickel oxide, shaped as polygonal particles with widely distributed sizes. As for the results in inert atmosphere, they outlined a mixture of Ni and NiO as rhombohedral particles in a 3:2 mole ratio.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministerul Cercetării şi Inovării
Grant numbers POSCCE 185/48749, contract 677/09.04.2015
References
M. L. Grilli, Metals 10 (2020) 820 (https://dx.doi.org/10.3390/met10060820)
M. Niculescu, M. C. Pascariu, C. Muntean, V. Sasca, L. Lupa, M. S. Milea, M. Bîrzescu, J. Therm. Anal. Calorim. 131 (2018) 127 (https://dx.doi.org/10.1007/s10973-016-6079-1)
D. Roşu, M. Bîrzescu, M.-S. Milea, M.-C. Pascariu, V. Sasca, M. Niculescu, Rev. Roum. Chim. 59 (2014) 789 (https://revroum.lew.ro/wp-content/uploads/2014/9/Art%2009.pdf)
M. Niculescu, V. Sasca, C. Muntean, M.-S. Milea, D. Roşu, M.-C. Pascariu, E. Sisu, I. Ursoiu, V. Pode, P. Budrugeac, Thermochim. Acta 623 (2016) 36 (https://dx.doi.org/10.1016/j.tca.2015.11.008)
S. S. Narender, V. V. S. Varma, C. S. Srikar, J. Ruchitha, P. A. Varma, B. V. S. Praveen, Chem. Eng. Technol. 45 (2022) 397 (https://dx.doi.org/10.1002/ceat.202100442)
V. Biju, M. A. Khadar, Mater. Sci. Eng., A 304–306 (2001) 814 (https://dx.doi.org/10.1016/S0921-5093(00)01581-1)
F. Bødker, M. F. Hansen, C. B. Bender Koch, S. Mørup, J. Magn. Magn. Mater. 221 (2000) 32 (https://dx.doi.org/10.1016/S0304-8853(00)00392-9)
C. L. Carnes, K. J. Klabunde, J. Mol. Catal., A 194 (2003) 227 (https://dx.doi.org/10.1016/S1381-1169(02)00525-3)
G. Boschloo, A. Hagfeldt, J. Phys. Chem., B 105 (2001) 3039 (https://dx.doi.org/10.1021/jp003499s)
D. Das, M. Pal, E. Di Bartolomeo, E. Traversa, D. Chakravorty, J. Appl. Phys. 88 (2000) 6856 (https://dx.doi.org/10.1063/1.1312835)
Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Thermochim. Acta 437 (2005) 106 (https://dx.doi.org/10.1016/j.tca.2005.06.027)
X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun. 137 (2006) 581 (https://dx.doi.org/10.1016/j.ssc.2006.01.031)
D. Y. Han, H. Y. Yang, C. B. Shen, X. Zhou, F. H. Wang, Powder Tech. 147 (2004) 113 (https://dx.doi.org/10.1016/j.powtec.2004.09.024)
X. Y. Deng, Z. Chen, Mater. Lett. 58 (2004) 276 (https://dx.doi.org/10.1016/S0167-577X(03)00469-5)
X. Xin, Z. Lü, B. Zhou, X. Huang, R. Zhu, X. Sha, Y. Zhang, W. Su, J. Alloy Compd. 427 (2007) 251 (https://dx.doi.org/10.1016/j.jallcom.2006.02.064)
A. Dierstein, H. Natter, F. Meyer, H.-O. Stephan, C. Kropf, R. Hempelmann, Scr. Mater. 44 (2001) 2209 (https://dx.doi.org/10.1016/S1359-6462(01)00906-X)
C. Lin, S. A. Al-Muhtaseb, J. A. Ritter, J. Sol–Gel Sci. Tech. 28 (2003) 133 (https://dx.doi.org/10.1023/A:1025653607374)
Y. R. Park, K. J. Kim, J. Cryst. Growth 258 (2003) 380 (https://dx.doi.org/10.1016/S0022-0248(03)01560-4)
Y. Wang, C. Ma, X. Sun, H. Li, Inorg. Chem. Commun. 5 (2002) 751 (https://dx.doi.org/10.1016/S1387-7003(02)00546-4)
M. Bîrzescu, M. Milea, D. Roşu, I. Ledeți, M. Rafailă, V. Sasca, M. Niculescu, Rev. Roum. Chim. 59 (2014) 555 (https://revroum.lew.ro/wp-content/uploads/2014/6/Art%2024.pdf)
E. D. Macklen, J. Inorg. Nucl. Chem. 30 (1968) 2689 (https://dx.doi.org/10.1016/0022-1902(68)80396-3)
N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys.: Conf. Ser. 93 (2007) 012039 (https://dx.doi.org/10.1088/1742-6596/93/1/012039)
A. Wladimirsky, D. Palacios, M. C. D’Antonio, A. C. González-Baró, E. J. Baran, J. Argent. Chem. Soc. 98 (2011) 71 (https://notablesdelaciencia.conicet.gov.ar/bitstream/handle/11336/151619/CONICET_Digital_Nro.1f79f00b-4945-4466-aff5-917bfc14f1da_A.pdf)
M. Nowsath Rifaya, T. Theivasanthi, M. Alagar, Nanosci. Nanotechnol. (Rosemead, CA, U.S.) 2 (2012) 134 (https://dx.doi.org/10.5923/j.nn.20120205.01)
N. N. Dass, S. Sarmah, J. Therm. Anal. Calorim. 58 (1999) 137 (https://dx.doi.org/10.1023/A:1010148022032)
Spectral Database for Organic Compounds, SDBS, https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (accessed 25.09.2023)
H. Qiao, Z. Wei, H. Yang, L. Zhu, X. Yan, J. Nanomater. 2009 (2009) 795928 (https://dx.doi.org/10.1155/2009/795928)
X. M. Fu, Z. Z. Yang, Adv. Mater. Res. (Durnten-Zurich, Switz.) 228–229 (2011) 34 (https://dx.doi.org/10.4028/www.scientific.net/AMR.228-229.34).