Different electrode modification protocols for evaluating the water-splitting properties of a P(V)-metalloporphyrin
Main Article Content
Abstract
Water electrolysis is currently a notable research domain, having the identification of highly active, stable, and low-cost electrocatalysts as one of its most important pursuits. Herein, an A4 P(V)-centered metalloporphyrin – (5,10,15,20-tetraphenylporphinato) dichlorophosphorus (V) chloride – was evaluated in terms of its electrocatalytic water-splitting activity in acidic, neutral, and alkaline media. The experiments were performed on electrodes modified with the porphyrin complex using different protocols, and the most electrocatalytically active sample was the one obtained by applying a catalyst ink containing the metalloporphyrin and Carbon Black on glassy carbon. The best results were observed for the strongly alkaline medium (1 mol L-1 KOH), in which the electrode exhibited a hydrogen evolution reaction overpotential of 0.77 V and a Tafel slope of 0.135 V dec-1. Its stability was outlined by chronoamperometry and Raman spectroscopy. The results supplement the available data regarding the properties and applicative potential of metalloporphyrins and outline the implications of using different electrode manufacturing procedures.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. E. Rehman, S. Rehman, Energy Rep. 8 (2022) 5430 (https://doi.org/10.1016/j.egyr.2022.03.179)
C. Gursan, V. de Gooyert, Renew. Sust. Energ. Rev. 138 (2021) 1 (https://doi.org/10.1016/j.rser.2020.110552)
S. Banerjee, S. Kaushik, R. S. Tomar, Global Scenario of Biofuel Production: Past, Present and Future, in: Prospects of Renewable Bioprocessing in Future Energy Systems, A. A. Rastegari, A. N. Yadav, A. Gupta, Eds., Springer International Publishing, New York, USA, 2019, p. 499 (https://doi.org/10.1007/978-3-030-14463-0_18)
M. Saeed, J. Prashant, Int. J. Hydrogen Energ. 52 (2023) 1537 (https://doi.org/10.1016/j.ijhydene.2023.08.352)
S. E. Hosseini, M. A. Wahid, M. M. Jamil, A. A. M. Azli, M. F. Misbah, Int. J. Energ. Res. 39 (2015) 1597 (https://doi.org/10.1002/er.3381)
M. Rafique, R. Mubashar, M. Irshad, S. S. A. Gillani, M. Bilal Tahir, N. R. Khalid, A. Yasmin, M. A. Shehzad, J. Inorg. Organomet. P. 30 (2020) 3837 (https://doi.org/10.1007/s10904-020-01611-9)
X. Shi, X. Liao, Y. Li, Renew. Energ. 154 (2020) 786 (https://doi.org/10.1016/j.renene.2020.03.026)
W. Li, Y. Liu, A. Azam, Y. Liu, J. Yang, D. Wang, C. C. Sorrell, C. Zhao, S. Li, Adv. Mater. Early View (2024) 1 (https://doi.org/10.1002/adma.202404658)
N. Lv, Q. Li, H. Zhu, S. Mu, X. Luo, X. Ren, X. Liu, S. Li, C. Cheng, T. Ma, Adv. Sci. 10 (2023) 2206239 (https://doi.org/10.1002/advs.202206239)
A. Raveendran, M. Chandran, R. Dhanusuraman, RSC Adv. 13 (2023) 3843 (https://doi.org/10.1039/D2RA07642J)
O. V. Kharissova, Y. P. Mendez, B. I. Kharisov, A. L. Nikolaev, E. Luevano-Hipolito, L. T. Gonzalez, Particuology 90 (2024) 236 (https://doi.org/10.1016/j.partic.2023.12.008)
Q. Li, Y. Bao, F. Bai, MRS Bull. 45 (2020) 569 (https://doi.org/10.1557/mrs.2020.168)
B. Yao, Y. He, S. Wang, H. Sun, X. Liu, Int. J. Mol. Sci. 23 (2022) 6036 (https://doi.org/10.3390/ijms23116036)
M. Birdeanu, E. Fagadar-Cosma, The Self-Assembly of Porphyrin Derivatives into 2D and 3D Architectures, in Quantum Nanosystems: Structure, Properties, and Interactions, M. V. Putz, Ed., Apple Academic Press, Toronto, Canada, 2014, p. 173 (https://doi.org/10.1201/b17412)
B.-O. Taranu, E. Fagadar-Cosma, P. Sfirloaga, M. Poienar, Energies 16 (2023) 1212 (https://doi.org/10.3390/en16031212)
R. M. Kellett, T. G. Spiro, Inorg. Chem. 24 (1985) 2373 (https://doi.org/10.1021/ic00209a011).
I. Fratilescu, A. Lascu, B. O. Taranu, C. Epuran, M. Birdeanu, A.-M. Macsim, E. Tanasa, E. Vasile, E. Fagadar-Cosma, Nanomaterials-Basel 12 (2022) 1930 (https://doi.org/10.3390/nano12111930)
L. Salageanu, D. Muntean, H. F. George, A. Lascu, D. Anghel, I. C. Bagiu, E. Fagadar-Cosma, Rev. Romana Med. Lab. 28 (2020) 205 (https://doi.org/10.2478/rrlm-2020-0014)
E. Fagadar-Cosma, V. Badea, G. Fagadar-Cosma, A. Palade, A. Lascu, I. Fringu, M. Birdeanu, Molecules 22 (2017) 1787 (https://doi.org/10.3390/molecules22101787)
I. Creanga, A. Palade, A. Lascu, M. Birdeanu, I. Popa, Fluorescent Sensor for Pb2+ Detection Based on Distorted Phosphorus (V) Porphyrin Ionic Complex, in Proceeding of the 20th International Symposium on Analytical and Environmental Problems, (2014), University of Szeged, Hungary, Proceedings of the 20th International Symposium on Analytical and Environmental Problems, University of Szeged, Szeged, 2014, p. 205 (ISBN 978-963-12-1161-0)
C. A. Marrese, C. J. Carrano, Inorg. Chem. 22 (1983) 1858 (https://doi.org/10.1021/ic00155a007)
H. Sharghi, A. H. Nejad, Phosphorus Sulfur 179 (2004) 2297 (https://doi.org/10.1080/10426500490484995)
L. R. Snyder, J. J. Kirkland, J. L. Glajch, Practical HPLC Method Development, John Wiley & Sons, New Jersey, USA, 1997 (https://doi.org/10.1002/9781118592014)
Z. Szabadai, L. Sbarcea, L. Udrescu, Analiza fizică și chimică a medicamentului, Victor Babes publishing house, Timisoara, Romania, 2016 (ISBN 978-606-786-020-7)
J. Chang, Q. Lv, G. Li, J. Ge, C. Liu, W. Xing, Appl. Catal. B-Environ. 204 (2017) 486 (https://doi.org/10.1016/j.apcatb.2016.11.050)
Y. Ge, Z. Lyu, M. Marcos-Hernandez, D. Villagran, Chem. Sci. 13 (2022) 8597 (https://doi.org/10.1039/D2SC01250B)
B.-O. Taranu, E. Fagadar-Cosma, Processes 10 (2022) 611 (https://doi.org/10.3390/pr10030611)
B.-O. Taranu, E. Fagadar-Cosma, Nanomaterials-Basel 12 (2022) 3788 (https://doi.org/10.3390/nano12213788)
B.-O. Taranu, S. F. Rus, E. Fagadar-Cosma, Coatings 14 (2024) 1048 (https://doi.org/10.3390/coatings14081048)
M. Poienar, B.‑O. Taranu, P. Svera, P. Sfirloaga, P. Vlazan, J. Therm. Anal. Calorim. 147 (2022) 11839 (https://doi.org/10.1007/s10973-022-11435-z)
B. O. Taranu, S. D. Novaconi, M. Ivanovici, J. N. Goncalves, F. S. Rus, Appl. Sci.-Basel 12 (2022) 229708 (https://doi.org/10.3390/app12136821)
M. Kolbach, S. Fiechter, R. van de Krol, P. Bogdanoff, Catal. Today 290 (2017) 2 (https://doi.org/10.1016/j.cattod.2017.03.030)
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E. B. Duoss, C. M. Spadaccini, M. A. Worsley, Y. Li, Joule 3 (2019) 459 (https://doi.org/10.1016/j.joule.2018.09.020)
M. L. F. Ciriaco, M. I. Silva-Pereira, M. R. Nunes, F. M. Costa, Port. Electrochim. Acta 17 (1999) 149 (https://doi.org/10.4152/pea.199902149)
Z. Zhou, W. Q. Zaman, W. Sun, L. M. Cao, M. Tariq, J. Yang, Chem. Commun. 54 (2018) 4959 (https://doi.org/10.1039/c8cc02008f)
F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol, S. Calnan, ChemElectroChem 8 (2021) 195 (https://doi.org/10.1002/celc.202001436)
Z. Y. Wu, B. C. Hu, P. Wu , H. W. Liang, Z. L. Yu, Y. Lin, Y. R. Zheng, Z. Li, S. H. Yu, NPG Asia Mater. 8 (2016) e288 (https://doi.org/10.1038/am.2016.87)
S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale 9 (2017) 3969 (https://doi.org/10.1039/c6nr09428g)
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117 (2017) 3717 (https://doi.org/10.1021/acs.chemrev.6b00299)
S. Wang, A. Lu, C. J. Zhong, Nano Converg. 8 (2021) 4 (https://doi.org/10.1186/s40580-021-00254-x)
M. Durovic, J. Hnat, K. Bouzek, J. Power Sources 493 (2021) 229708 (https://doi.org/10.1016/j.jpowsour.2021.229708).