Malachite green removal by Eryngium caeruleum ash

Main Article Content

Shaghayegh Azizi
https://orcid.org/0009-0009-4483-3446
Hassan Zavvar Mousavi
https://orcid.org/0000-0002-7276-9375

Abstract

In this study, malachite green has been successfully removed from an aqueous solution with the use of Eryngium caeruleum ash as an adsorbent. The influence of effective factors on the dye removal process, like contact time, the initial concentration of dye, amount of adsorbent, temperature, and pH, has been studied. The findings revealed that optimal malachite green adsorption occurred at pH 7, 120 min of contact time, 0.01 g of adsorbent, and 100 mg L-1 of initial dye concentration. Furthermore, the adsorption results follow the Langmuir isotherm with a correlation coefficient (R2 = 0.98), (qmax = 476.19 mg g-1), and pseudo-second order kinetic (R2 = 0.97). Endothermic and spontaneous adsorption were implied by the positive ∆H°, ∆S°, and negative ∆G°. Therefore, to remove MG from aqueous solutions, Eryngium caeruleum ash can be exploited as a low-cost and environmentally friendly adsorbent.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Azizi and H. Zavvar Mousavi, “Malachite green removal by Eryngium caeruleum ash”, J. Serb. Chem. Soc., Sep. 2024.
Section
Analytical Chemistry

References

M. Zarrabi, R. Alizadeh, S. Mahboob, Sep. Purif. Technol. 211 (2019) 738

(https://doi.org/10.1016/j.seppur.2018.10.026)

M. M. Hassan, C.M. Carr, Chemosphere 209 (2018) 201 (https://doi.org/10.1016/j.chemosphere.2018.06.043)

M. Imran, D.E. Crowley, A. Khalid, S. Hussain, M.W. Mumtaz, M. Arshad, Rev. Environ. Sci. Biotechnol. 14 (2015) 73 (https://doi.org/10.1007/s11157-014-9344-4)

K. Tewari, G. Singhal, R. K. Arya, Rev. Chem. Eng. 34 (2018) 427 (https://doi.org/10.1515/revce-2016-0041)

K. Jain, A. S. Patel, V. P. Pardhi, S. J. S. Flora, Molecules. 26 (2021) 1797 (https://doi.org/10.3390/molecules26061797)

D. A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16 (2019) 1193 (https://doi.org/10.1007/s13762-018-2130-z)

D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang, Chemosphere 275 (2021) 130104 (https://doi.org/10.1016/j.chemosphere.2021.130104)

F. E. Titchou, H. Zazou, H. Afanga, J. El Gaayda, R. Ait Akbour, P.V. Nidheesh, M. Hamdani, Chem. Eng. Process. - Process Intensif. 169 (2021) 108631 (https://doi.org/10.1016/j.cep.2021.108631)

A. Khaligh, H. Zavvar Mousavi, A. Rashidi, and H. Shirkhanloo, J. Serb. Chem. Soc. 83 (2018) 651 (https://doi.org/10.2298/JSC170827112K)

A. A. Fodeke and O. O. Olayera, J. Serb. Chem. Soc. 84 (2019) 1143 (https://doi.org/10.2298/JSC190209042F)

W. Wei, L. Yang, W.H. Zhong, S.Y. Li, J. Cui, Z.G. Wei, Dig. J. Nanomater. Biostruct. 19 (2015) 1343 (https://www.chalcogen.ro/1343_Wei.pdf)

S. Farch, M. M. Yahoum, S. Toumi, H. Tahraoui, S. Lefnaoui, M. Kebir, M. Zamouche, A. Amrane, J. Zhang, A. Hadadi, L. Mouni, Separations 10 (2023) 60 (https://doi.org/10.3390/separations10010060)

A. B. D. Nandiyanto, W. C. Nugraha, I. Yustia, R. Ragadhita, M. Fiandini, M. Saleh, D. R. Ningwulan, J. Adv. Res. Appl. Mech.106 (2023) 1 (https://doi.org/10.37934/aram.106.1.113)

A. B. D. Nandiyanto, R. Oktiani, R. Ragadhita, Indones. J. Sci. Technol. 4 (2019) 97 (https://doi.org/10.17509/ijost.v4i1.15806)

J. Coates, Encycl. Anal. Chem ,12 (2000) 10815 (https://doi.org/10.1002/9780470027318.a5606)

E. Smidt, M. Schwanninger, Spectrosc. Lett. 38 (2005) 247

(https://doi.org/10.1081/SL-200042310)

R. Bagheri, M. Ghaedi, A. Asfaram, E.A. Dil, H. Javadian, Polyhedron 171 (2019) 464 (https://doi.org/10.1016/j.poly.2019.07.037)

M. Messaoudi, M. Douma, N. Tijani, Y. Dehmani, L. Messaoudi, Desalin. Water Treat. 240 (2021) 191 (https://doi.org/10.5004/dwt.2021.27688)

U. Jinendra, B.M. Nagabhushana, D. Bilehal, Desalin. Water Treat. 209 (2021) 392 (https://doi.org/10.5004/dwt.2021.26536)

N. Khamis Soliman, A. F. Moustafa, A. A. Aboud, K. S. A. Halim, J. Mater. Res. Technol. 8 (2019) 1798 (https://doi.org/10.1016/j.jmrt.2018.12.010)

N. M. Mahmoodi, Z. Mokhtari Shourijeh, Desalin. Water Treat. 57 (2016) 20076 (https://doi.org/10.1080/19443994.2015.1109562)

Y. Miyah, A. Lahrichi, M. Idrissi, K. Anis, R. Kachkoul, N. Idrissi, S. Lairini, V. Nenov, F. Zerrouq, J. Mater. Environ. Sci. 8 (2017) 3570 (https://www.jmaterenvironsci.com/Document/vol8/vol8_N10/377-JMES-Myah.pdf)

D. R. Rout, H.M. Jena, Mater. Today: Proc. 47 (2021) 1173 (https://doi.org/10.1016/j.matpr.2021.03.406)

F. Gündüz, B. Bayrak, J. Mol. Liq.243 (2017) 790 (https://doi.org/10.1016/j.molliq.2017.08.095)

D. C. Roy, M.M. Sheam, M.R. Hasan, A.K. Saha, A.K. Roy, M.E. Haque, M.M. Rahman, T. Swee-Seong, S.K. Biswas, bioRxiv. (2020) 2020 (https://doi.org/10.1101/2020.03.29.014274)

S. Archana, B.K. Jayanna, A. Ananda, M.S. Ananth, A.M. Ali, H.B. Muralidhara, K.Y. Kumar, J. Indian Chem. Soc.99 (2022) 100249 (https://doi.org/10.1016/j.jics.2021.100249)

Y. Dehmani, O. El Khalki, H. Mezougane, S. Abouarnadasse, Chem. Data Collect. 33 (2021) 100674 (https://doi.org/10.1016/j.cdc.2021.100674)

D. R. Rout, H.M. Jena, Environ. Sci. Pollut. Res.30 (2023) 22992 (https://doi.org/10.1007/s11356-022-23774-3)

J. U. Ani, S.C. Agbo, O.A. Odewole, F.K. Ojo, O.L. Alum, K.G. Akpomie, A.C. Ofomatah, H.O. Chukwuemeka-Okorie, O.D. Onukwuli, IOP Conf. Ser.: Earth Environ. Sci. 1178 (2023) 012023 (https://doi.org/10.1088/1755-1315/1178/1/012023)

S. Ukachuku, E.D. Dikio, World News Nat. Sciences. 49 (2023) 1 (http://www.worldnewsnaturalsciences.com/wp-content/uploads/2023/05/WNOFNS-49-2023-1-13.pdf)

E. H. Gürkan, B. İlyas, Y. Tibet, Int J Environ Anal Chem. 103 (2023) 1343 (https://doi.org/10.1080/03067319.2021.1873314)

S. S. Madan, K.L. Wasewar and C. Ravi Kumar, Adv. Powder Technol. 27 (2016) 2112 (https://doi.org/10.1016/j.apt.2016.07.024)

A. I. Abd-Elhamid, H. F. Aly, H. A. Soliman, A. A. El-Shanshory, J. Mol. Liq. 265 (2018) 226 (https://doi.org/10.1016/j.molliq.2018.05.127)

F. Bouaziz, M. Koubaa, F. Kallel, R. E. Ghorbel, S. E. Chaabouni, Int. J. Biol. Macromol. 105 (2017) 56 (https://doi.org/10.1016/j.ijbiomac.2017.06.106)

T. K. Murthy, B.S. Gowrishankar, M. C. Prabha, M. Kruthi, R.H. Krishna, Microchem. J.146 (2019) 192 (https://doi.org/10.1016/j.microc.2018.12.067)

M. Abbas, Adsorpt. Sci. Technol. 38 (2020) 24 (https://doi.org/10.1177/0263617420904476)

Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorpt. Sci. Technol. 34 (2016) 512 (https://doi.org/10.1177/0263617416669727)

S. Salamat, M. Hadavifar, H. Rezaei, J. Environ. Chem. Eng.7 (2019) 103328 (https://doi.org/10.1016/j.jece.2019.103328)

S. Rangabhashiyam, S. Lata, P. Balasubramanian, Surf. Interfaces. 10 (2018) 197 (https://doi.org/10.1016/j.surfin.2017.09.011)

H. Mahadevan, P.V. M. Nimina, K.A. Krishnan, Sustain. Water Resour. Manag. 8 (2022) 38 (https://doi.org/10.1007/s40899-022-00612-5).