Application of magnetite nanoparticle-modified walnut shell as an adsorbent for the removal of the organic dye Coomassie Brilliant Blue R-250

Main Article Content

Mozhgan Biuoki
https://orcid.org/0009-0007-3779-3488
Hassan Zavvar Mousavi
https://orcid.org/0000-0002-7276-9375
Majid Arvand
https://orcid.org/0000-0002-5824-8688
Hadi Fallah Moafi

Abstract

In this research, a magnetic nanocomposite, walnut shell@Fe3O4, was synthesized as a natural adsorbent for the removal of Coomassie Brilliant Blue (CBB) R-250 organic dye from aqueous solutions, achieving a remarkable removal efficiency of 96.16%. The morphology of the nanocomposite was characterized using SEM and FTIR, revealing particle sizes of less than 18 nanometers. Additionally, BET analysis was performed, indicating a high surface area that enhances adsorption capacity. The influential variables affecting dye removal, including solution pH, stirring time, adsorbent dosage, initial dye concentration, temperature, and ionic strength, were optimized. The adsorption process was analyzed using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The experimental results indicated that the process followed the Freundlich and Temkin isotherm models, suggesting the heterogeneous nature of the adsorbent surface. The kinetic conditions of adsorption were investigated using pseudo-first order and pseudo-second-order models, with results showing that the adsorption process of CBB followed the pseudo-second-order kinetic model, indicating the chemical adsorption of the dye onto the magnetic nanoparticles. Thermodynamic studies also revealed the spontaneous nature of the adsorption process, with a positive slope of the Van't Hoff curve indicating an exothermic reaction. Due to the equilibrium time of 5 minutes in the adsorption mechanism, the synthesized magnetic nanocomposite demonstrated a high CBB dye removal rate, making it suitable for treating dye-containing solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Biuoki, H. Zavvar Mousavi, M. Arvand, and H. Fallah Moafi, “Application of magnetite nanoparticle-modified walnut shell as an adsorbent for the removal of the organic dye Coomassie Brilliant Blue R-250”, J. Serb. Chem. Soc., Nov. 2024.
Section
Analytical Chemistry

Funding data

References

R. Zein, H. Fathony, P. Ramadhani, Deswati, J. Serb. Chem. Soc. 89 (2024) 123 (https://doi.org/10.2298/JSC230303084Z)

M. Vukčević, M. Maletić, B. Pejić, N. Karić, K. Trivunac, A. Perić Grujić, J. Serb. Chem. Soc. 88 (2023) 669 (https://doi.org/10.2298/JSC221213015V)

Z. Y. Velkova, G. K. Kirova, M. S. Stoytcheva, V. Gochev, J. Serb. Chem. Soc. 83 (2018) 107 (https://doi.org/10.2298/JSC170519093V)

N. Nourbakhsh, H. Zavvar Mousavi, E. Kolvari, A. Khaligh, Appl. Chem. Today. 17 (2023) 33 (https://doi.org/10.22075/chem.2021.23896.1991)

M. Ghereghlou, A. A. Esmaeili, M. Darroudi, Sep. Sci. Technol. 57 (2022) 2005 (https://doi.org/10.1080/01496395.2022.2029490)

V. K. Veni, T. H. Brenda, IOP Conf. Ser.: Earth Environ. Sci. 765 (2021) 012039 (https://doi.org/10.1088/1755-1315/765/1/012039)

B. M. Thamer, A. Aldalbahi, M. Moydeen A, H. El-Hamshary, A. M. Al-Enizi, M. H. El-Newehy, Mater. Chem. Phys. 234 (2019) 133 (https://doi.org/10.1016/j.matchemphys.2019.05.087)

G. Sharma, M. Naushad, A. Kumar, S. Rana, S. Sharma, A. Bhatnagar, F. J. Stadler, A. A. Ghfar, M. R. Khan, Process Saf. Environ. Prot. 109 (2017) 301 (https://doi.org/10.1016/j.psep.2017.04.011)

J. A. Putri, A. Suratman, R. Roto, J. Metastable Nanocrystall. Mater. 34 (2022) 63 (https://doi.org/10.4028/v-4f958r)

A. O. Ezzat, A. M. Tawfeek, J. R. Rajabathar, H. A. Al-Lohedan, Molecules 27 (2022) 441 (https://www.mdpi.com/1420-3049/27/2/441)

A. O. Ezzat, A. M. Tawfeek, F. Mohammad, H. A. Al-Lohedan, J. Mol. Liq. 358 (2022) 119195 (https://doi.org/10.1016/j.molliq.2022.119195)

S. Dhananasekaran, R. Palanivel, S. Pappu, J. Adv. Res. 7 (2016) 113 (https://doi.org/10.1016/j.jare.2015.03.003)

P. F. de Sales, Z. M. Magriotis, M. A. L. S. Rossi, R. F. Resende, C. A. Nunes, J. Environ. Manag. 130 (2013) 417 (https://doi.org/10.1016/j.jenvman.2013.08.067)

G. R. Chaudhary, P. Saharan, A. Umar, S. K. Mehta, S. Mor, Sci. Adv. Mater. 5 (2013) 1886 (https://doi.org/10.1166/sam.2013.1701)

M. Altikatoglu, M. Celebi, Artif. Cells Blood Substit. Biotechnol. 39 (2011) 185 (https://doi.org/10.3109/10731199.2010.533124)

N. T. Abdel-GhANi, G. A. El-Chaghaby, E.-S. A. Rawash, E. C. Lima, J. Chil. Chem. Soc. 62 (2017) 3505 (https://doi.org/10.4067/S0717-97072017000200016)

S. Dehghan Abkenar, M. Hassannezhad, M. Hosseini, M. R. Ganjali, J. Serb. Chem. Soc. 84 (2019) 701 (https://doi.org/10.2298/JSC181228038D)

X.-S. Li, G.-T. Zhu, Y.-B. Luo, B.-F. Yuan, Y.-Q. Feng, TrAC, Trends Anal. Chem. 45 (2013) 233 (https://doi.org/10.1016/j.trac.2012.10.015)

M. Bordbar, N. Negahdar, B. Khodadadi, J. Nanostruct. 12 (2022) 262 (https://doi.org/10.22052/JNS.2022.02.005)

S. Rahnama, S. Shariati, F. Divsar, Comb. Chem. High Through. Screen. 21 (2018) 583 (https://doi.org/10.2174/1386207321666181019111211)

M. Khan, S. Naseer, M. Khan, R. Nazir, A. Badshah, Adnan, S. Shujah, A. Parveen, Desal. Water Treat. 228 (2021) 286 (https://doi.org/10.5004/dwt.2021.27352)

A. Ali Ahmed, Z. Hattab, Y. Berredjem, S. Hamoudi, R. Djellabi, Desal. Water Treat. 317 (2024) 100278 (https://doi.org/10.1016/j.dwt.2024.100278)

M. Erfani, R. Ansari, H. Zavvar Mousavi, Appl. Chem. Today. 17 (2022) 149 (https://doi.org/10.22075/chem.2022.23980.1994)

S. Temel, E. Yaman, N. Ozbay, F. O. Gokmen, J. Serb. Chem. Soc. 85 (2020) 939 (https://doi.org/10.2298/JSC190517114T)

D. Kosale, C. Thakur, V. K. Singh, J. Serb. Chem. Soc. 88 (2023) 653 (https://doi.org/10.2298/JSC220830021K)

S. Jadali, S. M. Sajjadi, H. Zavvar Mousavi, M. Rajabi, Anal. Bioanal. Chem. Res. 4 (2017) 171 (https://doi.org/10.22036/abcr.2016.67517.1122)

M. Hadnađev Kostić, T. Vulić, Đ. Karanović, M. Milanović, J. Serb. Chem. Soc. 87 (2022) 1011 (https://doi.org/10.2298/JSC220228034H)

Z. Lotfi, H. Z. Mousavi, S. M. Sajjadi, Anal. Methods 9 (2017) 4504 (https://doi.org/10.1039/C7AY01166K)

J. Rahchamani, H. Z. Mousavi, M. Behzad, Desalination 267 (2011) 256 (https://doi.org/10.1016/j.desal.2010.09.036)

S. M. Seyed Danesh, H. Faghihian, S. Shariati, J. Nano Res. 52 (2018) 54 (https://doi.org/10.4028/www.scientific.net/JNanoR.52.54)

Z. Dahaghin, H. Z. Mousavi, L. Boutorabi, J. Mol. Liq. 243 (2017) 380 (https://doi.org/10.1016/j.molliq.2017.08.018)

S. Eftekhari, M. R. Sohrabi, S. Mortazavinik, Iran. J. Chem. Chem. Eng. (2024) (https://doi.org/10.30492/ijcce.2024.2016928.6343)

D. Marković, S. Milovanović, M. Radoičić, Ž. Radovanović, I. Zizovic, Z. Šaponjić, M. Radetić, J. Serb. Chem. Soc. 83 (2018) 1379 (https://doi.org/10.2298/JSC180913089M)

C. A. P. Almeida, N. A. Debacher, A. J. Downs, L. Cottet, C. A. D. Mello, J. Colloid Interface Sci. 332 (2009) 46 (https://doi.org/10.1016/j.jcis.2008.12.012)

I. Espinoza, C. Sandoval Pauker, L. Ramos Guerrero, P. Vargas Jentzsch, F. Muñoz Bisesti, J. Serb. Chem. Soc. 85 (2020) 547 (https://doi.org/10.2298/JSC190804119E)

A. A. Fodeke, O. O. Olayera, J. Serb. Chem. Soc. 84 (2019) 1143 (https://doi.org/10.2298/JSC190209042F)

S. K. Hassaninejad-Darzi, H. Z. Mousavi, M. Ebrahimpour, J. Mol. Liq. 248 (2017) 990 (https://doi.org/10.1016/j.molliq.2017.10.126)

K. Gul, H. Khan, N. Muhammad, B. Ara, T. U. H. Zia, Sep. Sci. Technol. 56 (2021) 2507 (https://doi.org/10.1080/01496395.2020.1839498)

A. C. Enache, P. Samoila, C. Cojocaru, R. Apolzan, G. Predeanu, V. Harabagiu, Sustainability 15 (2023) 2704 (https://doi.org/10.3390/su15032704)

I. Badran, R. Khalaf, Sep. Sci. Technol. 55 (2020) 2433 (https://doi.org/10.1080/01496395.2019.1634731).