Field experiment on the uptake of lead, strontium, cobalt, and nickel in the wood and bark of spruce (Picea abies L.) and Douglas-fir (Pseudotsuga menziesii Mirb.)
Main Article Content
Abstract
Human activities have significantly altered the availability and circulation of pollutants, impacting their concentrations in the environment. This pollution notably affects trees. In this study, we conducted two separate experiments (I and II) to investigate the uptake of lead, strontium, cobalt, and nickel in spruce (Picea abies L.) and Douglas-fir (Pseudotsuga menziesii Mirb.) seedlings. These seedlings were exposed to elevated levels of these metals by adding them to the soil. Our field experiments provide insights into metal accumulation in natural environments. We measured concentrations of these elements, along with manganese and zinc, in the soil, wood, and bark using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The results showed increased levels of the added metals in the wood and bark of both tree species. Notably, there was a significant increase in lead and nickel concentrations in Douglas-fir wood. The lead concentration in Douglas-fir wood was 7 and 4 times higher in experiments I and II, respectively, compared to the control group of seedlings, while the nickel concentration was 18 and 10 times higher. These findings suggest that Douglas-fir wood has potential for phytostabilization of lead and nickel based on trace element concentrations and transfer factors.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
W. Liu, J. Ni, Q. Zhou, Mater. Sci. Forum 743–744 (2013) 768 (https://dx.doi.org/10.4028/www.scientific.net/MSF.743-744.768)
D. M. Marković, I. R. Milošević, D. Vilotić, Environ. Sci. Pollut. Res. 20 (2013) 136 (https://dx.doi.org/10.1007/s11356-012-1024-8)
M. Yousaf, K. L. Mandiwana, K. S. Baig, J. Lu, Water Air Soil Poll. 231:382 (2020) 382 (https://dx.doi.org/10.1007/s11270-020-04758-w)
W. Kusiak, J. Majka, I. Ratajczak, M. Górska, M. Zborowska, Forests 11:746 (2020) 746 (https://dx.doi.org/10.3390/F11070746)
H. Sevik, M. Cetin, A. Ozturk, H. B. Ozel, B. Pinar, Appl. Ecol. Env. Res. 17 (2019) 12843 (https://dx.doi.org/10.15666/aeer/1706_1284312857)
A. Turkyilmaz, H. Sevik, K. Isinkaralar, M. Cetin, Environ. Sci. Pollut. R. 26 (2019) 5122 (https://dx.doi.org/10.1007/s11356-018-3962-2)
L. Gómez, A. Contreras, D. Bolonio, J. Quintana, L. Oñate-Sánchez, I. Merino, Adv. Bot. Res., 89 (2019) 281 (https://doi.org/10.1016/bs.abr.2018.11.010)
H. Marschner, Mineral nutrition of higher plants, Academic Press, London, UK, p. 313, 1995. (https://doi.org/10.1016/C2009-0-02402-7)
M. N. V. Prasad, J. Hagemeyer, Heavy metal stress in plants: From molecules to ecosystems, Springer-Verlag, Berlin Heidelberg New York, 1999, p. 1 (ISBN: 3662077450)
M. Praspaliauskas, N. Pedisius, A. Gradeckas, J. For. Res. 29 (2018) 347 (https://doi.org/10.1007/s11676-017-0455-y)
N. Rascio, F. Navari-Izzo, Plant Sci. 180 (2011) 169–181 (https://doi.org/10.1016/j.plantsci.2010.08.016)
I. V. Seregin, A. D. Kozhevnikova, Russ. J. Plant Phys. 53 (2006) 257 (https://doi.org/10.1134/S1021443706020178)
B. J. Alloway, Heavy metals in soils, Springer Science & Business Media, Berlin Heidelberg New York, 2013, p. 196 (https://doi.org/10.1007/978-94-007-4470-7)
J. R. Donnelly, J. B. Shane, P. G. Schaberg, J. Environ. Qual. 19 (1990) 268–271 (https://doi.org/10.2134/jeq1990.00472425001900020012x)
Z. Q. Lin, N. N. Barthakur, P. H. Schuepp, G. G. Kennedy, Environ. Exp. Bot. 35 (1995) 475 (https://doi.org/10.1016/0098-8472(95)00039-9)
S. A. Watmough, T. C. Hutchinson, Environ. Pollut. 121 (2003) 39 (https://doi.org/10.1016/S0269-7491(02)00208-7)
A. Bonet, G. Pascaud, C. Faugeron, M. Soubrand, E. Joussein, V. Gloaguen, G. Saladin, Int. J. Phytoremediat. 18 (2016) 559 (https://doi.org/10.1080/15226514.2015.1086297)
C. Astier, V. Gloaguen, C. Faugeron, Int. J. Phytoremediat. 16 (2014) 790 (https://doi.org/10.1080/15226514.2013.856849)
M. S. Günthardt-Goerg, P. Vollenweider, R. Schulin, Plants 11 (2022) 523 (https://doi.org/10.3390/plants11040523)
O. P. Zhivotovsky, Y. A. Kuzovkina, C. P. Schulthess, T. Morris, D. Pettinelli, Int. J. Phytoremediat. 13 (2011) 731 (https://doi.org/10.1080/15226514.2010.525555)
H. Cobanoglu, H. Sevik, İ. Koç, Water Air Soil Poll. 234:65 (2023) 65 (https://doi.org/10.1007/s11270-023-06086-1)
S.-O. Borgegard, H. Rydin, J. Appl. Ecol. 26 (1989) 585 (https://doi.org/10.2307/2404084)
D. Butkus, E. Baltrėnaitė, Ekologija 53 (2007) 29 (ISSN: 0235-7224)
N. Mirecki, R. Agič, L. Šunić, L. Milenković, Z. S. Ilić, Fresen. Environ. Bull. 24 (2015) 4212 (ISSN: 1018-4619)
E. Baltrėnaitė, A. Lietuvninkas, P. Baltrėnas, Water Air Soil Pollut. 223 (2012) 4297 (https://doi.org/10.1007/s11270-012-1192-7)
Official Gazette of the Republic of Serbia 64/2019 (2019) 1
H. Sevik, M. Cetin, H. Ucun Ozel, H. B. Ozel, M. M. M. Mossi, I. Zeren Cetin, Environ. Sci. Pollut. R. 27 (2020) 2423 (https://doi.org/10.1007/s11356-019-06895-0)
G. Saladin, Phytoextraction of Heavy Metals: The Potential Efficiency of Conifers, in Soil Biology, 44, Springer Science & Business Media, Berlin Heidelberg New York, 2015, p. 333 (https://doi.org/10.1007/978-3-319-14526-6_18)
K. Saarela, L. Harju, J. Rajander, J. Lill, S. Heselius, Sci. Total Environ. 343 (2005) 231 (https://doi.org/10.1016/j.scitotenv.2004.09.043)
S. N. Istanbullu, H. Sevik, K. Isinkaralar, O. Isinkaralar, B. Environ. Contam. Tox. 110:78 (2023) 1 (https://doi.org/10.1007/s00128-023-03720-w)
M. Cetin, A. M. O. Aljama, O. B. M. Alrabiti, F. Adiguzel, H. Sevik, I. Zeren Cetin, Water Air Soil Pollut. 233:163 (2022) 1 (https://doi.org/10.1007/s11270-022-05638-1)
D. Butkus, E. Baltrėnaitė, Ekologija 53 (2007) 68 (ISSN: 0235-7224)
S. W. Breckle, H. Kahle, Vegetatio 101 (1992) 43 (https://doi.org/10.1007/BF00031914)
L. Augusto, J. Ranger, D. Binkly, A. Rothe, Ann. Forest. Sci. 59 (2002) 233 (https://doi.org/10.1051/forest:2002020)
K. Isermann, Handbook of Stable Strontium, Springer-Verlag, Berlin Heidelberg New York, 1981, pp. 65 (https://doi.org/10.1007/978-1-4684-3698-3_5).