Field experiment on the uptake of lead, strontium, cobalt, and nickel in the wood and bark of spruce (Picea abies L.) and Douglas-fir (Pseudotsuga menziesii Mirb.)

Main Article Content

Ivana Milošević
https://orcid.org/0000-0002-4463-5986
Sanja Živković
https://orcid.org/0000-0003-1499-1645
Miloš Momčilović
https://orcid.org/0000-0001-9117-5903
Željka Višnjić-Jeftić
https://orcid.org/0000-0002-8206-2138
Milorad Veselinović
https://orcid.org/0000-0002-2134-7631
Ivana Marković
https://orcid.org/0009-0001-9498-8325
Dragan Marković
https://orcid.org/0009-0005-0064-4759

Abstract

Human activities have significantly altered the availability and circulation of pollutants, impacting their concentrations in the environment. This pollution notably affects trees. In this study, we conducted two separate experiments (I and II) to investigate the uptake of lead, strontium, cobalt, and nickel in spruce (Picea abies L.) and Douglas-fir (Pseudotsuga menziesii Mirb.) seedlings. These seedlings were exposed to elevated levels of these metals by adding them to the soil. Our field experiments provide insights into metal accumulation in natural environments. We measured concentrations of these elements, along with manganese and zinc, in the soil, wood, and bark using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The results showed increased levels of the added metals in the wood and bark of both tree species. Notably, there was a significant increase in lead and nickel concentrations in Douglas-fir wood. The lead concentration in Douglas-fir wood was 7 and 4 times higher in experiments I and II, respectively, compared to the control group of seedlings, while the nickel concentration was 18 and 10 times higher. These findings suggest that Douglas-fir wood has potential for phytostabilization of lead and nickel based on trace element concentrations and transfer factors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Milošević, “Field experiment on the uptake of lead, strontium, cobalt, and nickel in the wood and bark of spruce (Picea abies L.) and Douglas-fir (Pseudotsuga menziesii Mirb.)”, J. Serb. Chem. Soc., Jan. 2025.
Section
Environmental Chemistry

References

W. Liu, J. Ni, Q. Zhou, Mater. Sci. Forum 743–744 (2013) 768 (https://dx.doi.org/10.4028/www.scientific.net/MSF.743-744.768)

D. M. Marković, I. R. Milošević, D. Vilotić, Environ. Sci. Pollut. Res. 20 (2013) 136 (https://dx.doi.org/10.1007/s11356-012-1024-8)

M. Yousaf, K. L. Mandiwana, K. S. Baig, J. Lu, Water Air Soil Poll. 231:382 (2020) 382 (https://dx.doi.org/10.1007/s11270-020-04758-w)

W. Kusiak, J. Majka, I. Ratajczak, M. Górska, M. Zborowska, Forests 11:746 (2020) 746 (https://dx.doi.org/10.3390/F11070746)

H. Sevik, M. Cetin, A. Ozturk, H. B. Ozel, B. Pinar, Appl. Ecol. Env. Res. 17 (2019) 12843 (https://dx.doi.org/10.15666/aeer/1706_1284312857)

A. Turkyilmaz, H. Sevik, K. Isinkaralar, M. Cetin, Environ. Sci. Pollut. R. 26 (2019) 5122 (https://dx.doi.org/10.1007/s11356-018-3962-2)

L. Gómez, A. Contreras, D. Bolonio, J. Quintana, L. Oñate-Sánchez, I. Merino, Adv. Bot. Res., 89 (2019) 281 (https://doi.org/10.1016/bs.abr.2018.11.010)

H. Marschner, Mineral nutrition of higher plants, Academic Press, London, UK, p. 313, 1995. (https://doi.org/10.1016/C2009-0-02402-7)

M. N. V. Prasad, J. Hagemeyer, Heavy metal stress in plants: From molecules to ecosystems, Springer-Verlag, Berlin Heidelberg New York, 1999, p. 1 (ISBN: 3662077450)

M. Praspaliauskas, N. Pedisius, A. Gradeckas, J. For. Res. 29 (2018) 347 (https://doi.org/10.1007/s11676-017-0455-y)

N. Rascio, F. Navari-Izzo, Plant Sci. 180 (2011) 169–181 (https://doi.org/10.1016/j.plantsci.2010.08.016)

I. V. Seregin, A. D. Kozhevnikova, Russ. J. Plant Phys. 53 (2006) 257 (https://doi.org/10.1134/S1021443706020178)

B. J. Alloway, Heavy metals in soils, Springer Science & Business Media, Berlin Heidelberg New York, 2013, p. 196 (https://doi.org/10.1007/978-94-007-4470-7)

J. R. Donnelly, J. B. Shane, P. G. Schaberg, J. Environ. Qual. 19 (1990) 268–271 (https://doi.org/10.2134/jeq1990.00472425001900020012x)

Z. Q. Lin, N. N. Barthakur, P. H. Schuepp, G. G. Kennedy, Environ. Exp. Bot. 35 (1995) 475 (https://doi.org/10.1016/0098-8472(95)00039-9)

S. A. Watmough, T. C. Hutchinson, Environ. Pollut. 121 (2003) 39 (https://doi.org/10.1016/S0269-7491(02)00208-7)

A. Bonet, G. Pascaud, C. Faugeron, M. Soubrand, E. Joussein, V. Gloaguen, G. Saladin, Int. J. Phytoremediat. 18 (2016) 559 (https://doi.org/10.1080/15226514.2015.1086297)

C. Astier, V. Gloaguen, C. Faugeron, Int. J. Phytoremediat. 16 (2014) 790 (https://doi.org/10.1080/15226514.2013.856849)

M. S. Günthardt-Goerg, P. Vollenweider, R. Schulin, Plants 11 (2022) 523 (https://doi.org/10.3390/plants11040523)

O. P. Zhivotovsky, Y. A. Kuzovkina, C. P. Schulthess, T. Morris, D. Pettinelli, Int. J. Phytoremediat. 13 (2011) 731 (https://doi.org/10.1080/15226514.2010.525555)

H. Cobanoglu, H. Sevik, İ. Koç, Water Air Soil Poll. 234:65 (2023) 65 (https://doi.org/10.1007/s11270-023-06086-1)

S.-O. Borgegard, H. Rydin, J. Appl. Ecol. 26 (1989) 585 (https://doi.org/10.2307/2404084)

D. Butkus, E. Baltrėnaitė, Ekologija 53 (2007) 29 (ISSN: 0235-7224)

N. Mirecki, R. Agič, L. Šunić, L. Milenković, Z. S. Ilić, Fresen. Environ. Bull. 24 (2015) 4212 (ISSN: 1018-4619)

E. Baltrėnaitė, A. Lietuvninkas, P. Baltrėnas, Water Air Soil Pollut. 223 (2012) 4297 (https://doi.org/10.1007/s11270-012-1192-7)

Official Gazette of the Republic of Serbia 64/2019 (2019) 1

H. Sevik, M. Cetin, H. Ucun Ozel, H. B. Ozel, M. M. M. Mossi, I. Zeren Cetin, Environ. Sci. Pollut. R. 27 (2020) 2423 (https://doi.org/10.1007/s11356-019-06895-0)

G. Saladin, Phytoextraction of Heavy Metals: The Potential Efficiency of Conifers, in Soil Biology, 44, Springer Science & Business Media, Berlin Heidelberg New York, 2015, p. 333 (https://doi.org/10.1007/978-3-319-14526-6_18)

K. Saarela, L. Harju, J. Rajander, J. Lill, S. Heselius, Sci. Total Environ. 343 (2005) 231 (https://doi.org/10.1016/j.scitotenv.2004.09.043)

S. N. Istanbullu, H. Sevik, K. Isinkaralar, O. Isinkaralar, B. Environ. Contam. Tox. 110:78 (2023) 1 (https://doi.org/10.1007/s00128-023-03720-w)

M. Cetin, A. M. O. Aljama, O. B. M. Alrabiti, F. Adiguzel, H. Sevik, I. Zeren Cetin, Water Air Soil Pollut. 233:163 (2022) 1 (https://doi.org/10.1007/s11270-022-05638-1)

D. Butkus, E. Baltrėnaitė, Ekologija 53 (2007) 68 (ISSN: 0235-7224)

S. W. Breckle, H. Kahle, Vegetatio 101 (1992) 43 (https://doi.org/10.1007/BF00031914)

L. Augusto, J. Ranger, D. Binkly, A. Rothe, Ann. Forest. Sci. 59 (2002) 233 (https://doi.org/10.1051/forest:2002020)

K. Isermann, Handbook of Stable Strontium, Springer-Verlag, Berlin Heidelberg New York, 1981, pp. 65 (https://doi.org/10.1007/978-1-4684-3698-3_5).

Most read articles by the same author(s)