Determination of low alloying elements concentrations in cast iron by laser induced breakdown spectroscopy based on TEA CO2 laser system

Jelena J. Savović, Sanja M. Živković, Miloš Momčilović, Milan Trtica, Milovan Stoiljković, Miroslav Kuzmanović


The analytical capability of laser-produced plasma for the analysis of low alloying elements in cast iron samples has been investigated. The plasma was induced by irradiation of a sample in air at atmospheric pressure using an infrared CO2 laser. Emission spectra were recorded by time-integrated spati­ally-resolved measurement technique. A set of ten cast iron samples in a pow­der or particulate form were provided by BAM (Bundesanstalt für Material forschung und prüfung, Deutschland), seven of which were used for calib­ration, and three were treated as unknowns. Linear calibration curves were obtained for copper, chromium, and nickel, with correlation coefficients above 0.99. Precision and accuracy of the LIBS method was evaluated and compared to those obtained by the inductively coupled plasma (ICP) analysis of the same samples. Detection limits for Cu, Cr and Ni were close to those reported in the literature for other comparable iron-based alloys obtained using different LIBS systems. Analytical figures of merit of the studied LIBS system may be con­sidered as satisfying, especially in the light of other advantages of the method, like cost effective and fast analysis with no sample preparation, and with a pos­sibility for real-time on-site analysis.


nanosecond Transversely Excited Atmospheric carbon dioxide laser (TEA CO2); laser-induced breakdown spectroscopy; quantitative analysis; cast iron

Full Text:

PDF (2,889 kB)


U.S. Geological SurveyNational Minerals Information Center, /minerals/pubs/commodity/iron_&_steel_scrap/index.html#mcs (accessed 28/02/2017)

ASTM E351-13, Standard Test Methods for Chemical Analysis of Cast Iron—All Types, ASTM International, West Conshohocken, PA, 2013, (accessed 28/02/2017)

ISO 13898-1:1997(en) Steel and iron — Determination of nickel, copper and cobalt contents — Inductively coupled plasma atomic emission spectrometric method — Part 1: General requirements and sample dissolution, (accessed 28/02/2017)

ASTM E1999-11, Standard Test Method for Analysis of Cast Iron by Spark Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2011, (accessed 28/02/2017)

ASTM E322-12, Standard Test Method for Analysis of Low-Alloy Steels and Cast Irons by Wavelength Dispersive X-Ray Fluorescence Spectrometry , ASTM International, West Conshohocken, PA, 2012, (accessed 28/02/2017)

Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications, A. W. Miziolek, V. Palleschi, I. Schechter, Eds., Cambridge University Press, Cambridge, 2006

F. Boué-Bigne, Spectrochim. Acta, B 63 (2008) 1122

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J.J. Laserna, J.D. Winefordner, J. Anal. At. Spectrom. 20 (2005) 552

R. Sattmann, V. Sturm, R. Noll, J. Phys., D: Appl. Phys. 28 (1995) 2181

J. Vrenegor, R. Noll, V. Sturm, Spectrochim. Acta, B 60 (2005) 1083

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, Spectrochim. Acta, B 56 (2001) 671

M. O. Vieitez, J. Hedberg, O. Launila, L-E. Berg, Spectrochim. , B 60 (2005) 920

N. Idris, K. Kagawa, F. Sakan, K. Tsuyuki, S. Miura, Appl. Spectrosc. 61 (2007) 1344

A. Khumaeni, Z. S. Lie, H. Niki, Y. I. Lee, K. Kurihara, M. Wakasugi, T. Takahashi, K. Kagawa, Appl. Opt. 51 (2012) B121

J. Savovic, M. Stoiljkovic, M. Kuzmanovic, M. Momcilovic, J. Ciganovic, D. Rankovic, S. Zivkovic, M. Trtica, Spectrochim. Acta, B 118 (2016) 127

S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica, J. Savovic, Spectrochim. Acta, B 128 (2017) 22

M. Momcilovic, M. Kuzmanovic, D. Rankovic, J. Ciganovic, M. Stoiljkovic, J. Savovic, M. Trtica, Appl. Spectrosc. 69 (2015) 419

M. Momčilović, J. Ciganović, D. Ranković, U. Jovanović, M. Stoiljković, J. Savović, M. Trtica, J. Serb. Chem. Soc. 80 (2015) 1505

S. Zivkovic, J. Savovic, M. Trtica, J. Mutic, M. Momcilovic, J. Alloys Cmpds. 700 (2017) 175

M. S. Trtica, B. M. Gakovic, B. B. Radak, S. S. Miljanic, Proc. SPIE 4747 (2002) 44

A. Matsumoto, A. Tamura, K. Fukami, Y.H. Ogata, T. Sakka, Anal. Chem. 85 (2013) 3807

M. Khater, P van Kampen, J. T. Costello, J-P Mosnier, E. T. Kennedy, J. Phys., D: Appl. Phys. 33 (2000) 2252

C. Aragon, J. A. Aguilera, F. Penalba, Appl. Spectrosc. 53 (1999) 1259

V. Karki, A. Sarkare, M. Singh, G. S. Mauryarohit, R. Kumar, A. K. Rai, S. K. Aggarwal, Pramana 86 (2016) 1313

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, M. A. Harith, Anal. At. Spectrom. 19 (2004) 489

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, Elisabetta Tognoni, M. Harith, Anal. Bioanal. Chem. 385 (2006) 316

C. B Stipe, B. D Hensley, J. L Boersema, S. G Buckley, Appl. Spectrosc. 64 (2010) 154

V. Lednev, S. M. Pershina, A. F. Bunkina, J. Anal. At. Spectrom. 25 (2010) 1745.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)