Removal of pharmaceutically active substance ibuprofen from aqueous solution using TiO2/ZSM-5 zeolite hybrid photocatalysts Scientific paper
Main Article Content
Abstract
The removal of pharmaceutically active substance ibuprofen (IBU) from aqueous solution was studied using TiO2/ZSM-5 zeolite hybrid photocatalysts synthesized from 20 wt. % TiO2 P25 nanoparticles and ZSM-5 zeolites with different Si/Al ratio (11.5, 15, 25, 40 and 140). The hybrid materials were prepared by a simple and economic ultrasound assisted solid-state dispersion method and characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and ultraviolet-visible diffuse reflectance spectroscopy. Among them, the hybrid photocatalyst containing TiO2 and ZSM-5 zeolite with a Si/Al = 40 (denoted as TZ(40)) showed the highest removal efficiency, achieving 85 % IBU removal after 80 min under UV irradiation. The optimal condition for the removal of IBU from deionized water was found to be at a natural pH 4.5. Moreover, the removal of IBU from bottled drinking water in the presence of TZ(40) hybrid material was tested. Only 32 % IBU removal was achieved because change in pH value of reaction suspension decreased efficiency of IBU removal.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-65/2024-03/200146;451-03-66/2024-03/200026;451-03-65/2024-03/200161;451-03-66/2024-03/200161;451-03-65/2024-03/200116 -
Science Fund of the Republic of Serbia
Grant numbers 7309
References
A. L. Moreno Ríos, K. Gutierrez-Suarez, Z. Carmona, C. G. Ramos, L. F. Silva Oliveira, Chemosphere 291 (2022) 132822 (https://doi.org/10.1016/j.chemosphere.2021.132822)
Y. Li, G. Zhu, W. J. Ng, S. K. Tan, Sci. Total Environ. 468–469 (2014) 908 (https://doi.org/10.1016/j.scitotenv.2013.09.018)
P. Bottoni, S. Caroli, A. B. Caracciolo, Toxicol. Environ. Chem. 92 (2010) 549 (https://doi.org/10.1080/02772241003614320)
J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya, R. Ocampo-
-Pérez, Chemosphere 93 (2013) 1268 (https://doi.org/10.1016/j.chemosphere.2013.07.059)
A. Eslami, M. M. Amini, A. R. Yazdanbakhsh, N. Rastkari, A. Mohseni-Bandpei, S. Nasseri, E. Piroti, A. Asadi, Environ. Monit. Assess. 187 (2015) 1 (https://doi.org/10.1007/s10661-015-4952-1)
A. Romeiro, M. E. Azenha, M. Canle, V. H. N. Rodrigues, J. P. Da Silva, H. D. Burrows, Chem. Select 3 (2018) 10915 (https://doi.org/10.1002/slct.201801953)
M. Petrović, B. Škrbić, J. Živančev, L. Ferrando-Climent, D. Barcelo, Sci. Total Environ. 468–469 (2014) 415 (https://doi.org/10.1016/j.scitotenv.2013.08.079)
J. Choina, H. Kosslick, C. Fischer, G. U. Flechsig, L. Frunza, A. Schulz, Appl. Catal., B Environ. 129 (2013) 589 (https://doi.org/10.1016/j.apcatb.2012.09.053)
N. Jallouli, L. M. Pastrana-Martínez, A. R. Ribeiro, N. F. F. Moreira, J. L. Faria, O. Hentati, A. M. T. Silva, M. Ksibi, Chem. Eng. J. 334 (2018) 976 (https://doi.org/10.1016/j.cej.2017.10.045)
D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, J. Clean. Prod. 268 (2020) 121725 (https://doi.org/10.1016/j.jclepro.2020.121725)
Y. Xu, C. H. Langford, J. Phys. Chem., B 101 (1997) 3115 (https://doi.org/10.1021/jp962494l)
M. Gar Alalm, A. Tawfik, S. Ookawara, J. Environ. Chem. Eng. 4 (2016) 1929 (https://doi.org/10.1016/j.jece.2016.03.023)
A. Mishra, A. Mehta, S. Basu, J. Environ. Chem. Eng. 6 (2018) 6088 (https://doi.org/10.1016/j.jece.2018.09.029)
Lj. Damjanovic, A. Auroux, , in Zeolite Characterization and Catalysis, A. W. Chester, E. G. Derouane, Eds., Springer, Dordrecht, 2009, p. 107 (https://doi.org/10.1007/978-1-4020-9678-5)
A. Grela, J. Kuc, T. Bajda, Materials 14 (2021) 4994 (https://doi.org/10.3390/ma14174994)
G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Chem. Eng. J. 417 (2021) 129209 (https://doi.org/10.1016/j.cej.2021.129209)
S. Behravesh, N. Mirghaffari, A. A. Alemrajabi, F. Davar, M. Soleimani, Environ. Sci. Pollut. Res. 27 (2020) 26929 (https://doi.org/10.1007/s11356-020-09038-y)
K. K. Abbas, K. M. Shabeeb, A. A. A. Aljanabi, A. M. H. A. Al-Ghaban, Environ. Technol. Innov. 20 (2020) 101070 (https://doi.org/10.1016/j.eti.2020.101070)
S. Stojanović, M. Vranješ, Z. Šaponjić, V. Rac, V. Rakić, L. Ignjatović, L. Damjanović-
-Vasilić, Int. J. Environ. Sci. Technol. 20 (2023) 1 (https://doi.org/10.1007/s13762-022-04305-6)
T. F. Ferens, L. J. Visioli, A. T. Paulino, H. Enzweiler, Int. J. Environ. Sci. Technol. (2024) (https://doi.org/10.1007/s13762-024-06076-8)
N. Farhadi, T. Tabatabaie, B. Ramavandi, F. Amiri, Ultrason. Sonochem. 67 (2020) 105122 (https://doi.org/10.1016/j.ultsonch.2020.105122)
N. Farhadi, T. Tabatabaie, B. Ramavandi, F. Amiri, Environ. Res. 198 (2021) 111260 (https://doi.org/10.1016/j.envres.2021.111260)
J. Weitkamp, Solid State Ionics 131 (2000) 175 (https://doi.org/10.1016/S0167-2738(00)00632-9)
S. Stojanović, V. Rac, K. Mojsilović, R. Vasilić, S. Marković, Lj. Damjanović-Vasilić, Environ. Sci. Pollut. Res. 30 (2023) 84046 (https://doi.org/10.1007/s11356-023-28397-w)
C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, Holland, 2001 (https://www.iza-structure.org/books/Atlas_5ed.pdf)
H. G. Karge, E. Geidel, in Characterization I. Molecular Sieves – Science and Technology, Vol. 4., H. G. Karge, J. Weitkamp, Eds., Springer, Berlin, 2004, p. 1 (ISBN: 978-3-54-064335-7)
J. G. Yu, H.G. Yu, B. Cheng, X-J. Zhao, J. C. Yu, W-K. Ho, J. Phys. Chem., B 107 (2003) 13871 (https://doi.org/10.1021/jp036158y)
A. N. Ökte, Ö. Yilmaz, Appl. Catal., A 354 (2009) 132 (https://doi.org/10.1016/j.apcata.2008.11.022)
N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, Water Res. 144 (2018) 145 (https://doi.org/10.1016/j.watres.2018.07.017)
X. Zhang, F. Wu, X.W. Wu, C. Pengyu, D. Nansheng, J. Hazard. Mater. 157 (2008) 300 (https://doi.org/10.1016/j.jhazmat.2007.12.098)
U. I. Gaya, A. H. Abdullah, J. Photochem. Photobiol., C 9 (2008) 1 (https://doi.org/10.1016/j.jphotochemrev.2007.12.003)
D. Krajišnik, A. Daković, A. Malenović, M. Kragović, J. Milić, Clay Miner. 50 (2015) 11 (https://doi.org/10.1180/claymin.2015.050.1.02)
P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra, Chem. Eng. J. 277 (2015) 360 (https://doi.org/10.1016/j.cej.2015.04.097)
H. Ding, J. Hu, Chem. Eng. J. 397 (2020) 125462 (https://doi.org/10.1016/j.cej.2020.125462)
N. Negishi, Y. Miyazaki, S. Kato, Y. Yang, Appl. Catal., B 242 (2019) 449 (https://doi.org/10.1016/j.apcatb.2018.10.022).