Removal of pharmaceutically active substance ibuprofen from aqueous solution using TiO2/ZSM-5 zeolite hybrid photocatalysts Scientific paper

Main Article Content

Srna Stojanović
https://orcid.org/0000-0001-9950-8303
Marija Risitć
https://orcid.org/0009-0004-5262-5421
Danina Krajišik
https://orcid.org/0000-0002-5525-0109
Vladislav Rac
https://orcid.org/0000-0002-2790-3950
Ljiljana Damjanović-Vasilić
https://orcid.org/0000-0002-7858-235X

Abstract

The removal of pharmaceutically active substance ibuprofen (IBU) from aqueous solution was studied using TiO2/ZSM-5 zeolite hybrid photo­cat­alysts synthesized from 20 wt. % TiO2 P25 nanoparticles and ZSM-5 zeol­ites with different Si/Al ratio (11.5, 15, 25, 40 and 140). The hybrid materials were prepared by a simple and economic ultrasound assisted solid-state dispersion method and characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and ultraviolet-visible diffuse reflectance spectroscopy. Among them, the hybrid photocatalyst containing TiO2 and ZSM-5 zeolite with a Si/Al = 40 (denoted as TZ(40)) showed the highest removal efficiency, achieving 85 % IBU removal after 80 min under UV irradiation. The optimal condition for the removal of IBU from deionized water was found to be at a natural pH 4.5. Moreover, the removal of IBU from bottled drinking water in the presence of TZ(40) hybrid material was tested. Only 32 % IBU removal was achieved because change in pH value of reaction suspension decreased efficiency of IBU removal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stojanović, M. Risitć, D. Krajišik, V. Rac, and L. Damjanović-Vasilić, “Removal of pharmaceutically active substance ibuprofen from aqueous solution using TiO2/ZSM-5 zeolite hybrid photocatalysts: Scientific paper”, J. Serb. Chem. Soc., Dec. 2024.
Section
In Memoriam Issue Devoted to Prof. Dragan Veselinović

Funding data

References

A. L. Moreno Ríos, K. Gutierrez-Suarez, Z. Carmona, C. G. Ramos, L. F. Silva Oliveira, Chemosphere 291 (2022) 132822 (https://doi.org/10.1016/j.chemosphere.2021.132822)

Y. Li, G. Zhu, W. J. Ng, S. K. Tan, Sci. Total Environ. 468–469 (2014) 908 (https://doi.org/10.1016/j.scitotenv.2013.09.018)

P. Bottoni, S. Caroli, A. B. Caracciolo, Toxicol. Environ. Chem. 92 (2010) 549 (https://doi.org/10.1080/02772241003614320)

J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya, R. Ocampo-

-Pérez, Chemosphere 93 (2013) 1268 (https://doi.org/10.1016/j.chemosphere.2013.07.059)

A. Eslami, M. M. Amini, A. R. Yazdanbakhsh, N. Rastkari, A. Mohseni-Bandpei, S. Nasseri, E. Piroti, A. Asadi, Environ. Monit. Assess. 187 (2015) 1 (https://doi.org/10.1007/s10661-015-4952-1)

A. Romeiro, M. E. Azenha, M. Canle, V. H. N. Rodrigues, J. P. Da Silva, H. D. Burrows, Chem. Select 3 (2018) 10915 (https://doi.org/10.1002/slct.201801953)

M. Petrović, B. Škrbić, J. Živančev, L. Ferrando-Climent, D. Barcelo, Sci. Total Environ. 468–469 (2014) 415 (https://doi.org/10.1016/j.scitotenv.2013.08.079)

J. Choina, H. Kosslick, C. Fischer, G. U. Flechsig, L. Frunza, A. Schulz, Appl. Catal., B Environ. 129 (2013) 589 (https://doi.org/10.1016/j.apcatb.2012.09.053)

N. Jallouli, L. M. Pastrana-Martínez, A. R. Ribeiro, N. F. F. Moreira, J. L. Faria, O. Hentati, A. M. T. Silva, M. Ksibi, Chem. Eng. J. 334 (2018) 976 (https://doi.org/10.1016/j.cej.2017.10.045)

D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, J. Clean. Prod. 268 (2020) 121725 (https://doi.org/10.1016/j.jclepro.2020.121725)

Y. Xu, C. H. Langford, J. Phys. Chem., B 101 (1997) 3115 (https://doi.org/10.1021/jp962494l)

M. Gar Alalm, A. Tawfik, S. Ookawara, J. Environ. Chem. Eng. 4 (2016) 1929 (https://doi.org/10.1016/j.jece.2016.03.023)

A. Mishra, A. Mehta, S. Basu, J. Environ. Chem. Eng. 6 (2018) 6088 (https://doi.org/10.1016/j.jece.2018.09.029)

Lj. Damjanovic, A. Auroux, , in Zeolite Characterization and Catalysis, A. W. Chester, E. G. Derouane, Eds., Springer, Dordrecht, 2009, p. 107 (https://doi.org/10.1007/978-1-4020-9678-5)

A. Grela, J. Kuc, T. Bajda, Materials 14 (2021) 4994 (https://doi.org/10.3390/ma14174994)

G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Chem. Eng. J. 417 (2021) 129209 (https://doi.org/10.1016/j.cej.2021.129209)

S. Behravesh, N. Mirghaffari, A. A. Alemrajabi, F. Davar, M. Soleimani, Environ. Sci. Pollut. Res. 27 (2020) 26929 (https://doi.org/10.1007/s11356-020-09038-y)

K. K. Abbas, K. M. Shabeeb, A. A. A. Aljanabi, A. M. H. A. Al-Ghaban, Environ. Technol. Innov. 20 (2020) 101070 (https://doi.org/10.1016/j.eti.2020.101070)

S. Stojanović, M. Vranješ, Z. Šaponjić, V. Rac, V. Rakić, L. Ignjatović, L. Damjanović-

-Vasilić, Int. J. Environ. Sci. Technol. 20 (2023) 1 (https://doi.org/10.1007/s13762-022-04305-6)

T. F. Ferens, L. J. Visioli, A. T. Paulino, H. Enzweiler, Int. J. Environ. Sci. Technol. (2024) (https://doi.org/10.1007/s13762-024-06076-8)

N. Farhadi, T. Tabatabaie, B. Ramavandi, F. Amiri, Ultrason. Sonochem. 67 (2020) 105122 (https://doi.org/10.1016/j.ultsonch.2020.105122)

N. Farhadi, T. Tabatabaie, B. Ramavandi, F. Amiri, Environ. Res. 198 (2021) 111260 (https://doi.org/10.1016/j.envres.2021.111260)

J. Weitkamp, Solid State Ionics 131 (2000) 175 (https://doi.org/10.1016/S0167-2738(00)00632-9)

S. Stojanović, V. Rac, K. Mojsilović, R. Vasilić, S. Marković, Lj. Damjanović-Vasilić, Environ. Sci. Pollut. Res. 30 (2023) 84046 (https://doi.org/10.1007/s11356-023-28397-w)

C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, Holland, 2001 (https://www.iza-structure.org/books/Atlas_5ed.pdf)

H. G. Karge, E. Geidel, in Characterization I. Molecular Sieves – Science and Technology, Vol. 4., H. G. Karge, J. Weitkamp, Eds., Springer, Berlin, 2004, p. 1 (ISBN: 978-3-54-064335-7)

J. G. Yu, H.G. Yu, B. Cheng, X-J. Zhao, J. C. Yu, W-K. Ho, J. Phys. Chem., B 107 (2003) 13871 (https://doi.org/10.1021/jp036158y)

A. N. Ökte, Ö. Yilmaz, Appl. Catal., A 354 (2009) 132 (https://doi.org/10.1016/j.apcata.2008.11.022)

N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, Water Res. 144 (2018) 145 (https://doi.org/10.1016/j.watres.2018.07.017)

X. Zhang, F. Wu, X.W. Wu, C. Pengyu, D. Nansheng, J. Hazard. Mater. 157 (2008) 300 (https://doi.org/10.1016/j.jhazmat.2007.12.098)

U. I. Gaya, A. H. Abdullah, J. Photochem. Photobiol., C 9 (2008) 1 (https://doi.org/10.1016/j.jphotochemrev.2007.12.003)

D. Krajišnik, A. Daković, A. Malenović, M. Kragović, J. Milić, Clay Miner. 50 (2015) 11 (https://doi.org/10.1180/claymin.2015.050.1.02)

P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra, Chem. Eng. J. 277 (2015) 360 (https://doi.org/10.1016/j.cej.2015.04.097)

H. Ding, J. Hu, Chem. Eng. J. 397 (2020) 125462 (https://doi.org/10.1016/j.cej.2020.125462)

N. Negishi, Y. Miyazaki, S. Kato, Y. Yang, Appl. Catal., B 242 (2019) 449 (https://doi.org/10.1016/j.apcatb.2018.10.022).

Most read articles by the same author(s)