Quantum-chemical study of C–H···O interactions between HTcO4 and aromatic amino acids Scientific paper

Main Article Content

Miljan Bigović
https://orcid.org/0000-0003-2300-3063
Ivana S. Veljković
https://orcid.org/0000-0003-0584-4053
Jelena Petrović
https://orcid.org/0000-0002-7168-8848
Dušan Ž Veljković
https://orcid.org/0000-0002-1382-8785

Abstract

This study investigates C–H···O interactions between HTcO4 and aromatic amino acids (phenylalanine, tyrosine and tryptophan) through quan­tum-chemical calculations. The interaction energies calculations were com­bined with the analysis of molecular electrostatic potentials (MEP) to under­stand the nature of these interactions. The strongest interaction was observed for the HTcO4–tryptophan with an energy minimum of –9.53 kJ/mol at a dis­tance of 2.1 Å. Phenylalanine showed a similarly strong interaction, with a minimum of –9.49 kJ/mol, while tyrosine exhibited the weakest interaction, with a minimum of –8.61 kJ/mol. Electrostatic potential maps confirmed the electrostatic nature of the C–H···O interactions, highlighting the role of the oxygen atoms in acting as hydrogen bond acceptors. These findings suggest that the position of the hydrogen atoms relative to the substituents on the arom­atic ring influences the strength of the interactions. The results presented here could be of great importance for the recognition of new, overlooked noncov­alent contacts between pertechnetic acid and amino acid fragments and a better understanding of the stability of pertechnetate-peptide complexes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Bigović, I. Veljković, J. Petrović, and D. Ž Veljković, “Quantum-chemical study of C–H···O interactions between HTcO4 and aromatic amino acids: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 6, pp. 741–752, Jun. 2025.
Section
Theoretical Chemistry
Author Biography

Dušan Ž Veljković, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

Assistant professor

Funding data

References

D. Papagiannopoulou, J. Label. Compd. Radiopharm. 60 (2017) 502 (https://doi.org/10.1002/jlcr.3531).

J. G. O'Connell-Danes, B. T. Ngwenya, C. A. Morrison, J. B. Love, Angew. Chem. Int. Ed. 63 (2024) e202409834 (https://doi.org/10.1002/anie.202409834)

S. M. Rathmann, Z. Ahmad, S. Slikboer, H. A. Bilton, D. P. Snider, J. F. Valliant, in Radiopharmaceutical Chemistry, J. Lewis, A. Windhorst, B. Zeglis, Eds., Springer, Cham., 2019, p. 311 (https://doi.org/10.1007/978-3-319-98947-1_18)

J. Chen, Z. Cheng, Y. Miao, S. S. Jurisson, T. P. Quinn, Cancer 94 (2002) 1196 (https://doi.org/10.1002/cncr.10284)

D. Grödler, S. Burguera, A. Frontera, E. Strub, Chem. Eur. J. 30 (2024) e202400100 (https://doi.org/10.1002/chem.202400100)

R. Waibel, R. Alberto, J. Willuda, R. Finnern, R. Schibli, A. Stichelberger, A. Egli, U. Abram, J.-P. Mach, A. Plückthun, P. A. Schubiger, Nat. Biotechnol. 17 (1999) 897 (https://doi.org/10.1038/12890)

M. Bartholomä, J. Valliant, K. P. Maresca, J. Babich, J. Zubieta, Chem. Commun. 5 (2009) 493 (https://doi.org/10.1039/B814903H)

M. B.-U. Surfraz, R. King, S. J. Mather, S. Biagini, P. J. Blower, J. Inorg. Biochem. 103 (2009) 971 (https://doi.org/10.1016/j.jinorgbio.2009.04.007)

D. Hernández-Valdés, R. Alberto, U. Jáuregui-Haza, RSC Adv. 6 (2016) 107127 (https://doi.org/10.1039/C6RA23142J)

K. Manikandan, S. Ramakumar, Proteins 56 (2004) 768 (https://doi.org/10.1002/prot.20152)

D. Ž. Veljković, G. V. Janjić, S. D. Zarić, CrystEngComm 13 (2011) 5005 (https://doi.org/10.1039/C1CE05065F)

D. Ž. Veljković, J. Mol. Graph. Model. 80 (2018) 121 (https://doi.org/10.1016/j.jmgm.2017.12.014)

D. Ž. Veljković, V. B. Medaković, J. M. Andrić, S. D. Zarić, CrystEngComm 16 (2014) 10089 (https://doi.org/10.1039/C4CE00595C)

J. Lj. Dragelj, I. M. Stanković, D. M. Božinovski, T. Meyer, D. Ž. Veljković, V. B. Medaković, E.-W. Knapp, Snežana D. Zarić, Cryst. Growth Des. 16 (2016) 1948 (https://doi.org/10.1021/acs.cgd.5b01543)

Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013

C. Moller, M. S. Plesset, Phys. Rev. 46 (1934) 618 (https://doi.org/10.1103/PhysRev.46.618)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/B515623H)

T. H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

S. F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553 (https://doi.org/10.1080/00268977000101561)

L. Laaksonen, J. Mol. Graphics 10 (1992) 33 (https://doi.org/10.1016/0263-7855(92)80007-Z)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Cryst., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954).

Most read articles by the same author(s)