Removal of Fe2+, Zn2+ and Mn2+ ions from the mining wastewater by lemon peel waste

Slađana Meseldžija, Jelena Petrović, Antonije Onjia, Tatjana Volkov-Husović, Aleksandra Nešić, Nikola Vukelić

Abstract


This study aimed to evaluate the possibility of lemon peel, as an agro-industrial waste, to remove Fe2+, Zn2+ and Mn2+ ions from single aqueous solu­ti­ons and mining wastewater. For this purpose, the influence of various parame­ters: sorption time, initial pH solution, initial metal ion concentration and a dose of sorbent on the sorption process were studied in batch experiments. The experi­mental equilibrium data have been analysed utilizing linearized forms of Lang­muir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The Langmuir isotherm provided the best theoretical correlation of the experimental equilibrium data for Fe2+, Zn2+ and Mn2+ ions, with the maximum sorption capacities of 4.40, 5.03 and 4.52 mg g-1, respectively.  The percentage of targeted ions removal from single aqueous solutions was 92.9 % (Zn2+), 84.5 % (Fe2+) and 78.2 % (Mn2+). Regarding the sorption capability of lemon peel in mining wastewater, the maxi­mum removal of Fe2+, Zn2+ and Mn2+ ions from mining wastewater was 49.62, 33.97 and 9.11 %, respectively. In addition, the potential reusability of the lemon peel as sorbent was investigated through desorption study in 0.1M of CH3COO4, HCl and HNO3 solution. The highest rate of desorption was achieved in 0.1 M HCl solution, reached a value of 55.19 % for Mn2+ and 37.24 % for Zn2+, while for Fe2+ the highest value of 25.82 % was achieved in 0.1M HNO3 solution.


Keywords


Sorption; citrus peel; biosorbent; wastewater

Full Text:

PDF (1,354 kB)

References


E. Malkoc, J. Hazard. Mater. 137 (2006) 899 (https://doi.org/10.1016/j.jhazmat.2006.03.004)

S. E. Bailey, T. J. Olin, R. M. Bricka, D. D. Adrian, Water Res. 33 (1999) 2469 (https://doi.org/10.1016/S0043-1354(98)00475-8)

U. Kumar, Sci. Res. Essay 1 (2006) 33 (https://doi.org/10.5958/j.0974-4487.11.1.001)

T. Ahmad, M. Danish, J. Environ. Manage. 206 (2018) 330 (https://doi.org/10.1016/j.jenvman.2017.10.061)

Š. Abdić, M. Memić, E. Šabanović, J. Sulejmanović, S. Begić, Int. J. Environ. Sci. Technol. 15 (2018) 2511 (https://doi.org/10.1007/s13762-018-1645-7)

A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Chem. Eng. J. 270 (2015) 244 (https://doi.org/10.1016/J.CEJ.2015.01.135)

C. K. Jain, D. S. Malik, A. K. Yadav, Environ. Process. (2016) 495 (https://doi.org/10.1007/s40710-016-0143-5)

D. A. Zema, P. S. Calabrò, A. Folino, V. Tamburino, G. Zappia, S. M. Zimbone, Waste Manag. 80 (2018) 252 (https://doi.org/10.1016/j.wasman.2018.09.024)

M. E. Magare, N. Sahu, G. S. Kanade, C. S. Chanotiya, S. T. Thul, Waste and Biomass Valorization 11 (2020) 165 (https://doi.org/10.1007/s12649-018-0385-8)

D. Mamma, P. Christakopoulos, Waste and Biomass Valorization 5 (2013) 529 (https://doi.org/10.1007/s12649-013-9250-y)

Y. N. Mata, M. L. Blázquez, A. Ballester, F. González, J. A. Muñoz, Chem. Eng. J. 150 (2009) 289 (https://doi.org/10.1016/j.cej.2009.01.001)

E. F. Lessa, A. L. Medina, A. S. Ribeiro, A. R. Fajardo, Arab. J. Chem. 13 (2020) 709 (https://doi.org/10.1016/j.arabjc.2017.07.011)

S. Meseldzija, J. Petrovic, A. Onjia, T. Volkov-Husovic, A. Nesic, N. Vukelic, J. Ind. Eng. Chem. 75 (2019) (https://doi.org/10.1016/j.jiec.2019.03.031)

APHA Standard Methods for the Examination of Water and Wastewater, 17th ed., American Public Health Association, Washington DC, 1989

S. S. Nielsen, Food Analysis Laboratory Manual, Springer International Publishing, Cham, 2017 (https://doi.org/10.1007/978-3-319-44127-6)

H. P. Boehm, Carbon N. Y. 32 (1994) 759 (https://doi.org/10.1016/0008-6223(94)90031-0)

S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk, H. A. Andreas, Carbon N. Y. 48 (2010) 1252 (https://doi.org/10.1016/j.carbon.2009.11.050)

M. Masmoudi, S. Besbes, M. Chaabouni, C. Robert, Carbohydr. Polym. 74 (2008) 185 (https://doi.org/10.1016/j.carbpol.2008.02.003)

X. Li, Y. Tang, X. Cao, D. Lu, F. Luo, W. Shao, Colloids Surfaces A Physicochem. Eng. Asp. 317 (2008) 512 (https://doi.org/10.1016/j.colsurfa.2007.11.031)

T. Bohli, I. Villaescusa, A. Ouedern, J. Chem. Eng. Process Technol. 04 (2013) (https://doi.org/10.4172/2157-7048.1000158)

K. Anitha, R. J. Rinu Isah, Int. J. Pure Appl. Math. 116 (2017) 91 (https://acadpubl.eu/jsi/2017-116-13-22/articles/13/16.pdf)

E. Bernard, A. Jimoh, Int. J. Eng. Appl. Sci. 4 (2013) 95 (http://eaas-journal.org/survey/userfiles/files/v4i212%20chemical%20engineering(1).pdf)

K. M. Al-Qahtani, J. Taibah Univ. Sci. 10 (2016) 700 (https://doi.org/10.1016/j.jtusci.2015.09.001)

M. Ngabura, S. A. Hussain, W. A. W. A. Ghani, M. S. Jami, Y. P. Tan, J. Environ. Chem. Eng. 6 (2018) 2528 (https://doi.org/10.1016/j.jece.2018.03.052)

S. L. Shrestha, Int. J. Appl. Sci. Biotechnol. 6 (2018) 137 (https://doi.org/10.3126/ijasbt.v6i2.20423)

M. R. Moghadam, N. Nasirizadeh, Z. Dashti, E. Babanezhad, Int. J. Ind. Chem. 4 (2013) 19 (https://doi.org/10.1186/2228-5547-4-19)

. Ali, Environ. Nanotechnology, Monit. Manag. 7 (2017) 57 (https://doi.org/10.1016/j.enmm.2016.12.004)

M. Celus, C. Kyomugasho, Z. J. Kermani, K. Roggen, A. M. Van Loey, T. Grauwet, M. E. Hendrickx, Food Hydrocoll. 73 (2017) 101 (https://doi.org/10.1016/j.foodhyd.2017.06.021)

J. N. BeMiller, An Introduction to Pectins: Structure and Properties, in Chem. Funct. Pectins, American Chemical Society, 1986, pp. 2–12 (https://doi.org/10.1021/bk-1986-0310.ch001)

M. Y. Khotimchenko, E. A. Kolenchenko, Y. S. Khotimchenko, J. Colloid Interface Sci. 323 (2008) 216 (https://doi.org/10.1016/j.jcis.2008.04.013)

K. Biswas, S. K. Saha, U. C. Ghosh, Ind. Eng. Chem. Res. 46 (2007) 5346 (https://doi.org/10.1021/ie061401b)

M. P. Tavlieva, S. D. Genieva, V. G. Georgieva, L. T. Vlaev, J. Mol. Liq. 211 (2015) 938 (https://doi.org/10.1016/j.molliq.2015.08.015)

Y. Zhang, J. Zhao, Z. Jiang, D. Shan, Y. Lu, Biomed Res. Int. 2014 (2014) 1 (https://doi.org/10.1155/2014/973095)

A. Ali, K. Saeed, Desalin. Water Treat. (2014) 37 (https://doi.org/10.1080/19443994.2013.876669)

C. Wu, C. Kuo, S. Guan, Polish J. Environ. Stud. 24 (2015) 761 (https://doi.org/10.15244/pjoes/31222)

G. Annadurai, R. S. Juang, D. J. Lee, Water Sci. Technol. 47 (2003) 185 (https://doi.org/10.2166/wst.2003.0049)

P. A. Milani, K. B. Debs, G. Labuto, E. N. V. M. Carrilho, Environ. Sci. Pollut. Res. 25 (2018) 35895 (https://doi.org/10.1007/s11356-018-1615-0)




DOI: https://doi.org/10.2298/JSC200413030M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)