Molecular docking's pioneering role in materials science. Metal ion site-preference in fluorapatite Scientific paper
Main Article Content
Abstract
Originally created for biological systems, molecular docking has proven to be useful to predict metal ion binding locations and affinities in materials. By using this novel approach, it was possible to estimate the binding energies of Ca2+, Sr2+, Mn2+, Cu2+, and Pr3+ ions for two different calcium sites in fluorapatite. The data obtained from the crystal structures of doped fluorapatites showed a good agreement with the docking research. The interpretation of docking results was made easier by combining results from DFT calculations with geometrical analysis of crystal structures of small molecules. Notably, this strategy is more favourable than previously used theoretical approaches due to the computational efficiency and the demonstrated reliability.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-66/2024-03/ 200162;451-03-66/2024-03/200023;451-03-66/2024-03/200026
References
K. Pajor, L. Pajchel, J. Kolmas, Materials 12 (2019) 2683 (https://doi.org/10.3390/ma12172683)
N. Leroy, E. Bres, Eur. Cell Mater. 30 (2001) 36 (https://doi.org/10.22203/eCM.v002a05)
J. C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, Elsevier, Amsterdam London New-York Tokyo, 1994 (ISBN: 9780444815828)
E. R. Kreidler, F. A. Hummel, Am. Min. 55 (1970) 170.
D. V. Milojkov, V. Đ. Stanić, S. D. Dimović, D. R. Mutavdžić, V. Živković-Radovanović, G. V. Janjić, K. Radotić, Acta Phys. Pol. A. 136 (2019) 86 (https://dx.doi.org/10.12693/APhysPolA.136.86)
J. M. Hughes, M. Cameron, K. D. Crowley, Am. Min. 76 (1991) 1857 (http://www.minsocam.org/ammin/AM76/AM76_1857.pdf)
M. Miyake, K. Ishigaki, T. Suzuki, J. Solid State Chem. 61 (1986) 230 (https://doi.org/10.1016/0022-4596(86)90026-5)
D. V. Milojkov, M. D. Sokić, V. Živković‐Radovanović, V. D. Manojlović, D. R. Mutavdžić, G. V. Janjić, K. Radotić, Opt. Quantum Electron. 55 (2023) 84 (https://dx.doi.org/10.1007/s11082-022-04347-7)
M. E. Fleet, Y. Pan, Am. Min. 82 (1997) 870 (https://doi.org/10.2138/am-1997-9-1004)
P. E. Mackie, R. A. Young, J. Appl. Crystallogr. 6 (1973) 26 (https://doi.org/10.1107/S0021889873008009)
X. Li, J. Zhu, Z. Man, Y. Ao, H. Chen, Sci. Rep. 4446 (2014) 4446 (https://dx.doi.org/10.1038/srep04446)
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S.C. Ward, Acta Crystallogr. B. 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)
J. M. Hughes, M. Cameron, K. D. Crowley, Am. Min.74 (1989) 870
G. M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem., 16 (2009) 2785 (https://doi.org/10.1002/jcc.21256)
D. Biovia, H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, T.J.T.J.o.C.P. Richmond, Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v. 17.2.0.16349, San Diego: Dassault Systèmes, 2016, 10 (2000) 0021-9991
R. D. Shannon, Acta Crystallogr. A. 32 (1976) 751 https://doi.org/10.1107/S0567739476001551)
R. T. Downs, M. Hall-Wallace. Am. Min. 88 (2003) 247
D. V Milojkov, A. S Radosavljević-Mihajlović, V. Đ. Stanić, B. J Nastasijević, K. Radotić, I. Janković-Častvan, V. Živković-Radovanović, J. Photochem. Photobiol. B: Biology 239 (2023) 112649 (https://doi.org10.1016/j.jphotobiol.2023.112649)
R. Nikonam Mofrad, S. K. Sadrnezhaad, J. Vahdati Khaki, Scientia Iranica B 24 (2017) 2845 (https://doi.org/10.24200/sci.2017.4314)
V. Đ. Stanić, A. S. Radosavljević-Mihajlović, V. Živković-Radovanović, B. Nastasijević, M. Marinović-Cincović, J. P. Marković, M. D. Budimir, Appl. Surf. Sci, 337 (2015) 72 (https://doi.org/10.1016/j.apsusc.2015.02.065)
K. Tõnsuaadu, K. A. Gross, L. Plūduma, M. Veiderma, J. Therm. Anal. Calorim. 110 (2012) 647 (https://doi.org/10.1007/s10973-011-1877-y)
G. W. C. Silva, O. Hemmers, K. R. Czerwinski, D. W. Lindle, Inorg. Chem. 47 (2008) 7757 (https://doi.org/10.1021/ic800794x)
M. E. Fleet, Y. Pan, Am. Min. 80 (1995) 329 (https://doi.org/10.2138/am-1995-3-414)
D. V. Milojkov, O. F. Silvestre, V. Đ. Stanić, G. V. Janjić, D. R. Mutavdžić, M. Milanović, J. B. Nieder, J. Lumi. 217 (2020) 116757 (https://doi.org/10.1016/j.jlumin.2019.116757)
F. Keshavarz, B. Barbiellini, Comput. Mater. Sci. 226 (2023) 112257 (https://doi.org/10.1016/j.commatsci.2023.112257)
C. A. Anyama, H. Louis, B.E. Inah, T. E. Gber, J. O. Ogar, A. A. Ayi, J. Mol. Struct. 1277 (2023), 134825 (https://doi.org/10.1016/j.molstruc.2022.134825)
Q. Li, W. Zhang, O. Š. Miljanić, C.-H. Sue, Y.-L. Zhao, L. Liu, C. B. Knobler, J. F. Stoddart, O.M. Yaghi, Science 325 (2009) 855 (https://doi.org/10.1126/science.1175441)