Composite materials based on biochar from coffee husk origin and nano zero- valent type Fe/Cu: potential for treatment of water sources contaminated with As(V)

Main Article Content

Ngoc Toan Vu
Anh Phu Nguyen
https://orcid.org/0009-0005-2636-3197
Hong Son Nguyen
https://orcid.org/0009-0002-3882-7161
Viet Anh Pham
https://orcid.org/0009-0000-8730-9809
Dinh Thao Vu
https://orcid.org/0000-0002-8952-2897
Quang Minh Le
https://orcid.org/0009-0001-3940-9984

Abstract

In this study, a composite material, Gr-Fe/Cu@BC (CPS), was synthesized using biochar derived from coffee husks and Fe/Cu bimetallic zero-valent nanoparticles for the treatment of water contaminated with As(V). The Fe/Cu bimetallic zero-valent nanoparticles were synthesized via a green chemical method employing concentrated Camellia sinensis extract as a reducing agent for metal salts. A Box-Behnken experimental design identified optimal conditions for As(V) removal, including a pH range of 5-7, metal/C ratio of approximately 12-13 %, CPS/As from 1000 to 1250 w/w, and reaction time of around 180 min. The maximum As(V) removal efficiency reached 91.64 % with a maximum adsorption capacity (qmax) of 2.86 mg g-1. The adsorption kinetics of As(V) on CPS followed a pseudo-second-order model, with a rate constant (K2) of 5.96 g mg-1 h-1. Furthermore, the structural and surface properties of CPS were characterized using advanced analytical techniques such as SEM, TEM, BET, XRD, and EDS, confirming the successful integration of Fe/Cu nanoparticles onto the biochar matrix via complexation bonds. These findings highlight the potential of CPS as an environmentally friendly, cost-effective material for the treatment of As(V)-contaminated water and other heavy metal pollutants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. T. Vu, A. P. Nguyen, H. S. Nguyen, V. A. Pham, D. T. Vu, and Q. M. Le, “Composite materials based on biochar from coffee husk origin and nano zero- valent type Fe/Cu: potential for treatment of water sources contaminated with As(V) ”, J. Serb. Chem. Soc., May 2025.
Section
Environmental Chemistry

References

M. Chiban, G. Carja, G. Lehutu, F. Sinan, Arab. J. Chem. 9 (2016) 988 (https://doi.org/10.1016/j.arabjc.2011.10.002)

H. Alalwan, A. Alminshid, M. Mohammed, M. Mohammed, M. Shadhar, Nanomaterials 8 (2022) 995 (https://doi.org/10.22059/POLL.2022.337436.1329)

S. O. Kazantsev, K. V. Suliz, N. G. Rodkevich, A. S. Lozhkomoev, Materials 16 (2023) 6057 (https://doi.org/10.3390/ma16176057)

K. S. Patel, P. K. Pandey, P. Martín-Ramos, W. T. Corns, S. Varol, P. Bhattacharya, Y. Zhu, RSC Adv. 13 (2023) 8803 (10.1039/d3ra00789h)

R. N. Ratnaike, Postgrad. Med. J. 79 (2003) 391 (https://doi.org/10.1136/pmj.79.933.391)

P. Bhattacharyya, Md M. Alam, Arsenic-Contaminated Soil Toxicity and Its Mitigation Through Monocot Crops in Contaminants in Agriculture: Sources, Impacts and Management, Eds.: M. Naeem, A. A. Ansari, S. Singh Gill, Springer (2020) p. 327-337 (https://doi.org/10.1007/978-3-030-41552-5_16)

A. Shrivastava, A. Barla, S. Singh, S. Mandraha, S. Bose, J. Hazard. Mater. 324 (2017) 526 (https://doi.org/10.1016/j.jhazmat.2016.11.022)

V. Antoni, N. Saby, D. Arrouays, C. Jolivet, L. Boulonne, C. Ratie, A. Bispo, T. Eglin, A. Pierart, A. Gay, J.-L. Perrin, I. Joassard, (2019), available at (https://www.researchgate.net/publication/331648803_Arsenic_et_mercure_dans_les_sols_francais_pollutions_diffuses_et_ponctuelles)

R. Singh, S. Singh, P. Parihar, V. P. Singh, S. M. Prasad, Ecotoxicol. Environ. Saf. 112 (2015) 247 (https://doi.org/10.1016/j.ecoenv.2014.10.009)

X. Ren, H. Feng, M. Zhao, X. Zhou, X. Zhu, X. Ouyang, J. Tang, C. Li, J. Wang, W. Tang, L. Tang, Int. J. Env. Res. Pub. Health 20 (2023) 3829 (https://doi.org/10.3390/ijerph20053829)

K. Wrighton-Araneda, D. Cortés-Arriagada, Chem. Eng. J. 426 (2021) 131471 (https://doi.org/10.1016/j.cej.2021.131471)

H. Saitua, R. Gil, A. P. Padilla, Desalination 274 (2011) 1 (https://doi.org/10.1016/j.desal.2011.02.044)

L. A. Zemskova, A. V. Voit, D. K. Shlyk, N. N. Barinov, Russian J. Appl. Chem. 89 (2016) 727 (https://doi.org/10.1134/S1070427216050074)

G. Zhang, X. Li, S. Wu, P. Gu, Env. Earth Sci. 66 (2012) 1269 (https://doi.org/10.1007/s12665-012-1549-7)

Z. Moradi, A. Alihosseini, A. Ghadami, Res. Mat. 17 (2023) 100378 (https://doi.org/10.1016/j.rinma.2023.100378)

A. Fouly, H. S. Abdo, A. H. Seikh, K. Alluhydan, H. I. Alkhammash, I. A. Alnaser, M. S. Abdo, Polymers 13 (2021) 4407 (https://doi.org/10.3390/polym13244407)

A. Fouly, I. A. Alnaser, A. K. Assaifan, H. S. Abdo, Polymers 14 (2022) 3321 (https://doi.org/10.3390/polym14163321)

S. Ponte, World Develop. 30 (2002) 1099 (https://doi.org/10.1016/S0305-750X(02)00032-3)

P. Murthy, M. Naidu, Res. Conser. Recyc. 66 (2012) 45 (https://doi.org/10.1016/j.resconrec.2012.06.005)

L.-L. Kang, Y.-N. Zeng, Y.-T. Wang, J.-G. Li, F.-P. Wang, Y.-J. Wang, Q. Yu, X.-M. Wang, R. Ji, D. Gao, Z. Fang, J. Water Proc. Eng. 49 (2022) 103178 (https://doi.org/10.1016/j.jwpe.2022.103178)

W. S. Abo El-Yazeed, Y. G. Abou El-eash, L. A. Elatwy, A. I. Ahmed, RSC Adv. 10 (2020) 9693 (https://doi.org/10.1039/C9RA10300G)

S. Cheng, W. Meng, B. Xing, C. Shi, Q. Wang, D. Xia, Y. Nie, G. Yi, C. Zhang, H. Xia, J. Clean. Prod. 403 (2023) 136821 (https://doi.org/10.1016/j.jclepro.2023.136821)

M. Ajmal, M. Siddiq, N. Aktas, N. Sahiner, RSC Adv. 5 (2015) 43873 (https://doi.org/10.1039/C5RA05785J)

S. Zhou, Y. Li, J. Chen, Z. Liu, Z. Wang, P. Na, RSC Adv. 4 (2014) 50699 (https://doi.org/10.1039/C4RA08754B)

A. Behera, B. Mittu, S. Padhi, N. Patra, J. Singh, Bimetallic nanoparticles: Green synthesis, applications, and future perspectives in Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, Ed.: K. A. Abd-Elsalam, Elsevier Inc. (2020) p. 639-682 (https://doi.org/10.1016/B978-0-12-821354-4.00025-X)

Y. Shen, Y. Xiao, H. Zhang, H. Fan, Y. Li, Z. Yan, WH. Zhang, Chem. Eng. J. 477 (2023) 146823 (https://doi.org/10.1016/j.cej.2023.146823)

I. A. Ahmed, H. S. Hussein, Z. A. Alothman, A. G. Alanazi, N. S. Alsaiari, A. Khalid, Polymers 15 (2023) 1221 (https://doi.org/10.3390/polym15051221)

T. T. Hoa, L. V. Dung, L. H. Ha, N. B. Manh, Vietnam J. Cat. Adsorp. 9 (2020) 28 (https://doi.org/10.51316/jca.2020.025)

N. H. Son, V. H. Nguyen, T. T. H. Nguyen, N. T. Vu, N. H. Le, Nano Express 5 (2024) 025026 (https://doi.org/10.1088/2632-959X/ad5221)

Y. Lin, X. Jin, N. I. Khan, G. Owens, Z. Chen, J. Env. Manage. 301 (2022) 113838 (https://doi.org/10.1016/j.jenvman.2021.113838)

Z. Wu, X. Su, Z. Lin, G. Owens, Z. Chen, J. Hazard. Mat. 379 (2019) 120811 (https://doi.org/10.1016/j.jhazmat.2019.120811)

J. Zhou, X. Zhou, K. Yang, Z. Cao, Z. Wang, C. Zhou, S. A. Baig, X. Xu, J. Hazard. Mat. 384 (2020) 121229 (https://doi.org/10.1016/j.jhazmat.2019.121229)

F. Zhu, S. Ma, T. Liu, X. Deng, J. Clean. Prod. 174 (2017) 184 (https://doi.org/10.1016/j.jclepro.2017.10.302)

P. Ma, Q. Liu, P. Liu, H. Li, X. Han, L. Liu, W. Zou, J. Disp. Sci. Techn. 42 (2021) 1350 (https://doi.org/10.1080/01932691.2020.1764367)

T. H. Tran, N. T. Vu, P. H. Thien, N. D. Thanh, P. D. Tuan, Vietnam J. Sci. Tech. 55 (2017) 516 (https://doi.org/10.15625/2525-2518/55/4/9016)

T. S. Andrade, J. Vakros, D. Mantzavinos, P. Lianos, Chem. Eng. J. Adv. 4 (2020) 100061 (https://doi.org/10.1016/j.ceja.2020.100061)

Z. Xiong, B Lai, P. Yang, IOP Conference Series: Earth and Environmental Science 167 (2018) 012007 (https://doi.org/10.1088/1755-1315/167/1/012007)

S.-S. Zhang, N. Yang, S.-Q. Ni, V. Natarajan, H. A. Ahmad, S. Xu, X. Fang, J. Zhan, RSC Adv. 8 (2018) 26469 (https://doi.org/10.1039/C8RA04426K)

Y. Chen, X.-F. Zhang, A.-J. Wang, Q.-L. Zhang, H. Huang, J.-J. Feng, Microchimica Acta 186 (2019) 660 (https://doi.org/10.1007/s00604-019-3769-y)

G. Murtaza, Z. Ahmed, D.-Q. Dai, R. Iqbal, S. Bawazeer, M. Usman, M. Rizwan, J. Iqbal, M. I. Akram, A. S. Althubiani, A. Tariq, I. Ali, Fron. Env. Sci. 10 (2022) 1035865 (https://doi.org/10.3389/fenvs.2022.1035865)

P. Sepúlveda, M. A. Rubio, S. E. Baltazar, J. Rojas-Nunez, J. L. Sánchez Llamazares, A. G. Garcia, N. Arancibia-Miranda, J. Coll. Interf. Sci. 524 (2018) 177 (https://doi.org/10.1016/j.jcis.2018.03.113)

D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Adv. Water Res. 51 (2013) 104 (https://doi.org/10.1016/j.advwatres.2012.02.005)

C. Settimi, D. Zingaretti, S. Sanna, I. Verginelli, I. Luisetto, A. Tebano, R. Baciocchi, Sustainability 14 (2022) 7760 (https://doi.org/10.3390/su14137760)

S. Joshi, M. Sharma, A. Kumari, S. Shrestha, B. Shrestha, Appl. Sci. 9 (2019) 3732 (https://doi.org/10.3390/app9183732)

N. Mahanta, J. P. Chen, J. Mat. Chem. A 1 (2013) 8636 (https://doi.org/10.1039/C3TA10858A)

G. P. Gallios, A. K. Tolkou, I. A. Katsoyiannis, K. Stefusova, M. Vaclavikova, E. A. Deliyanni, Sustainability 9 (2017) 1684 (https://doi.org/10.3390/su9101684)

P. S. Harikumar, T.K. Hridya, Int. J. Env. Anal. Chem.101 (2021) 869 (https://doi.org/10.1080/03067319.2019.1673383).