DFT study on structure and stability of Al13Bn±m clusters
Main Article Content
Abstract
Al13Bn±m clusters were studied by the DFT-UB3LYP/6-311+G(d) method. The variations of structural and electronic properties with the changes of n and m were probed. For the Al13Bn±m clusters, the geometry of their stable structures have a high symmetry when n ≤ 2, such as Al13B (C2v), Al13B+ (C2v) and Al13B2+ (D4h). The differences of the Al‒B bond lengths between the most stable Al13Bn±m clusters are within 0.066 Å, and the energy differences between the isomers (ΔE) are within 1.000 eV for most clusters. The stability sequence of the clusters could be influenced by charges. Most of the lowest-
-energy structures of Al13Bn±m clusters contain the B2 moiety when n ≥ 3. Overall, the average binding energy of neutral clusters is larger than that of the corresponding anionic clusters, but smaller than that of the cationic clusters. The neutral clusters possess higher stability when n = 3 and 5, while Al13B3+ and Al13B5+ clusters are less stable than their neighbors are. Both the fragmentation energy and second order energy difference indicate that some clusters are more stable than their corresponding differently charged species of the same size.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
F. Baletto, R. Ferrando, Rev. Mod. Phys. 77 (2005) 371
D. J. Herry, J. Phys. Chem., C 116 (2012) 24814
W. D. Knight, K. Clemenger, W. A. Saunders, M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 52 (1984) 510
M. Schmidt, R. Kusche, B. V. Issendorff, H. Haberland, Nature 393 (1998) 238
H. M. Duan, Q. Q. Zheng, Phys. Lett., A 280 (2001) 333
S. Yamazoe, K. Koyasu, T. Tsukuda, Acc. Chem. Res. 47 (2014) 816
X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Ganteför, D. H. Fairbrother, K. H. Bowen, J. Phys. Chem., C 118 (2014) 29278
C. M. Ramos-Castillo, J. U. Reveles, R. R Zope, R. Coss, J. Phys. Chem., C 119 (2015) 8402
Y. Y. Wu, S. Y. Xu, F. Q. Zhao, X. H. Ju, J. Cluster Sci. 26 (2015) 983
E. B. Denis, A. W. Castleman, T. Morisato, Science 304 (2004) 84
D. E. Bergeron, P. J. Roach, A. W. Castleman, N. O. Jones, S. N. Khanna, Science 307 (2005) 231
A. Nakajima, T. Kishi, T. Sugioka, K. Kaya, Chem. Phys. Lett. 187 (1991) 239
I. Boustani, Phys. Rev., B. 55 (1997) 16426
J. Aihara, T. Ishida, J. Am. Chem. Soc. 127 (2005) 13324
Y. Y. Wu, F. Q. Zhao, X. H. Ju, Comput. Theor. Chem. 1027 (2014) 151
X. L. Lei, J. Cluster Sci. 22 (2011) 159
C. Romanescu, T. R. Galeev, W.-L. Li, A. I. Boldyrev, L. S. Wang, Acc. Chem. Res. 46 (2013) 350
Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, M. Ju, J. Phys. Chem., A 119 (2015) 6738
J. Y. Zhao, Y. Zhang, F. Q. Zhao, X. H. Ju, J. Phys. Chem., A 117 (2013) 12519
X. J. Feng, Y. H. Luo, J. Phys. Chem., A 111 (2007) 2420
M. Böyükata, Z. B. Güvenc, J. Alloys Compd. 509 (2011) 4214
C. Romanescu, A. P. Sergeeva, W. L. Li, A. I. Boldyrev, L. S. Wang, J. Am. Chem. Soc. 133 (2011) 8646
X. M. Wang, J. Alloys Compd. 403 (2005) 283
S. Karabay, I. Uzman, Mater. Manuf. Processes 20 (2005) 231
J. Wang, Y. Liu, Y. C. Li, Phys. Lett., A 374 (2010) 2736
R. G. Pearson, J. Chem. Sci. 117 (2005) 369
Y. J. Suh, J. W. Chae, H. D. Jang, K. Cho, Chem. Eng. J. 273 (2015) 401
J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM) 169 (1988) 41
A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899
Gaussian 09, Gaussian, Inc., Wallingford, CT, 2010
Z. K. Wu, C. Gayathri, R. R. Gri, R. C. Jin, J. Am. Chem. Soc. 131 (2009) 6535
Q. A. Smith, M. S. Gordon, J. Phys. Chem., A 115 (2011) 899
R. G. Parr, Z. X. Zhou, Acc. Chem. Res. 26 (1993) 256.