DFT study on structure and stability of Al13Bn±m clusters

Main Article Content

Jun-Zai Yu
Feng-Qi Zhao
Si-Yu Xu
Xue-Hai Ju

Abstract

Al13Bn±m clusters were studied by the DFT-UB3LYP/6-311+G(d) method. The variations of structural and electronic properties with the changes of n and m were probed. For the Al13Bn±m clusters, the geometry of their stable structures have a high symmetry when n ≤ 2, such as Al13B (C2v), Al13B+ (C2v) and Al13B2+ (D4h). The differences of the Al‒B bond lengths between the most stable Al13Bn±m clusters are within 0.066 Å, and the energy differences between the isomers (ΔE) are within 1.000 eV for most clusters. The stability sequence of the clusters could be influenced by charges. Most of the lowest-
-energy structures of Al13Bn±m clusters contain the B2 moiety when n ≥ 3. Overall, the average binding energy of neutral clusters is larger than that of the corresponding anionic clusters, but smaller than that of the cationic clusters. The neutral clusters possess higher stability when n = 3 and 5, while Al13B3+ and Al13B5+ clusters are less stable than their neighbors are. Both the fragment­ation energy and second order energy difference indicate that some clusters are more stable than their corresponding differently charged species of the same size.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J.-Z. Yu, F.-Q. Zhao, S.-Y. Xu, and X.-H. Ju, “DFT study on structure and stability of Al13Bn±m clusters”, J. Serb. Chem. Soc., vol. 82, no. 2, pp. 163–174, Mar. 2017.
Section
Theoretical Chemistry

References

F. Baletto, R. Ferrando, Rev. Mod. Phys. 77 (2005) 371

D. J. Herry, J. Phys. Chem., C 116 (2012) 24814

W. D. Knight, K. Clemenger, W. A. Saunders, M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 52 (1984) 510

M. Schmidt, R. Kusche, B. V. Issendorff, H. Haberland, Nature 393 (1998) 238

H. M. Duan, Q. Q. Zheng, Phys. Lett., A 280 (2001) 333

S. Yamazoe, K. Koyasu, T. Tsukuda, Acc. Chem. Res. 47 (2014) 816

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Ganteför, D. H. Fairbrother, K. H. Bowen, J. Phys. Chem., C 118 (2014) 29278

C. M. Ramos-Castillo, J. U. Reveles, R. R Zope, R. Coss, J. Phys. Chem., C 119 (2015) 8402

Y. Y. Wu, S. Y. Xu, F. Q. Zhao, X. H. Ju, J. Cluster Sci. 26 (2015) 983

E. B. Denis, A. W. Castleman, T. Morisato, Science 304 (2004) 84

D. E. Bergeron, P. J. Roach, A. W. Castleman, N. O. Jones, S. N. Khanna, Science 307 (2005) 231

A. Nakajima, T. Kishi, T. Sugioka, K. Kaya, Chem. Phys. Lett. 187 (1991) 239

I. Boustani, Phys. Rev., B. 55 (1997) 16426

J. Aihara, T. Ishida, J. Am. Chem. Soc. 127 (2005) 13324

Y. Y. Wu, F. Q. Zhao, X. H. Ju, Comput. Theor. Chem. 1027 (2014) 151

X. L. Lei, J. Cluster Sci. 22 (2011) 159

C. Romanescu, T. R. Galeev, W.-L. Li, A. I. Boldyrev, L. S. Wang, Acc. Chem. Res. 46 (2013) 350

Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, M. Ju, J. Phys. Chem., A 119 (2015) 6738

J. Y. Zhao, Y. Zhang, F. Q. Zhao, X. H. Ju, J. Phys. Chem., A 117 (2013) 12519

X. J. Feng, Y. H. Luo, J. Phys. Chem., A 111 (2007) 2420

M. Böyükata, Z. B. Güvenc, J. Alloys Compd. 509 (2011) 4214

C. Romanescu, A. P. Sergeeva, W. L. Li, A. I. Boldyrev, L. S. Wang, J. Am. Chem. Soc. 133 (2011) 8646

X. M. Wang, J. Alloys Compd. 403 (2005) 283

S. Karabay, I. Uzman, Mater. Manuf. Processes 20 (2005) 231

J. Wang, Y. Liu, Y. C. Li, Phys. Lett., A 374 (2010) 2736

R. G. Pearson, J. Chem. Sci. 117 (2005) 369

Y. J. Suh, J. W. Chae, H. D. Jang, K. Cho, Chem. Eng. J. 273 (2015) 401

J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM) 169 (1988) 41

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899

Gaussian 09, Gaussian, Inc., Wallingford, CT, 2010

Z. K. Wu, C. Gayathri, R. R. Gri, R. C. Jin, J. Am. Chem. Soc. 131 (2009) 6535

Q. A. Smith, M. S. Gordon, J. Phys. Chem., A 115 (2011) 899

R. G. Parr, Z. X. Zhou, Acc. Chem. Res. 26 (1993) 256.