Validation and application of a GC–MS method for the determination of haloacetic acids in drinking water

Lucas Ulisses Chiavelli, Luana Caroline Figueiredo, Rafaela Takako Almeida, Thiago Claus, Swami Arêa Maruyama, Willian Ferreira Costa

Abstract


Usually, water treatment plants employ chlorine or sodium hypochlo­rite during the disinfection process, ensuring that there are not any pathogenic microorganisms in water. However, chlorine might react with natural organic matter and lead to formation of potentially carcinogenic by-products regarding human health, such as haloacetic acids (HAAs). Several countries regulate the levels of these acids in drinking water. Therefore, their concentrations must be monitored with the greatest accuracy as possible. In order to achieve this goal, a method through gas chromatography coupled with mass spectrometry (GC–
–MS) was validated and applied to the determination of HAAs in samples of water destined to the public water service provision from the city of Maringá, Paraná State, Brazil. Measurements between two periods have close recovery values, indicating that the method has good accuracy during the same day. The limits of detection (LOD) and quantification (LOQ) were satisfactory, with LOD 0.42 μg L-1 and LOQ 1.40 μg L-1 for dichloro­acetic acid (DCAA) analysis. Recovery values obtained for the nine haloace­tics acids (HAA9) corresponded to 69.9–107.3 % for samples. The repeatability performed for two periods presented close relative standard deviation (RSD) values, indi­cat­ing that the method has good accuracy during the same day.


Keywords


Disinfection by-products, gas chromatography, mass spectro¬metry, merit figures

References


A. M. Dietrich, K. Phetxumphou, D. L. Gallagher, Water Res. 66 (2014) 63

P. Loubet, P. Roux, E. Loiseau, V. Bellon-Maurel, Water Res. 67 (2014) 187

E. Lenzi, L. O. B. Favero, E. B. Luchese, Introduction to Water Chemistry: Science, life and survival, LTC, Rio de Janeiro, Brazil, 2009 (in Portuguese)

World Health Organization, Guidelines for safe recreational water environments, World Health Organization, Geneva, Switzerland, 2003

X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, L. Chen, X. Liu, Environ. Sci. Technol. 46 (2012) 7342

R. Dyck, R. Sadiq, M. J. Rodriguez, S. Simard, R. Tardif, Water Res. 45 (2011) 5084

S. Richardson, M. Plewa, E. Wagner, R. Schoeny, D. Demarini, Mutat. Res. Mutat. Res. 636 (2007) 178

Y. Drori, Z. Aizenshtat, B. Chefetz, Geoderma 145 (2008) 98

J. A. Pals, J. K. Ang, E. D. Wagner, M. J. Plewa, Environ. Sci. Technol. 45 (2011) 5791

Y. Deng, Y. Zhang, R. Zhang, B. Wu, L. Ding, K. Xu, H. Ren, Environ. Sci. Technol. 48 (2014) 8212

A. D. Nikolaou, S. K. Golfinopoulos, T. D. Lekkas, J. Environ. Monit. 4 (2002) 910

M. Saraji, A. A. H. Bidgoli, J. Chromatogr., A 1216 (2009) 1059

F. J. Santos, M. T. Galceran, J. Chromatogr., A 1000 (2003) 125

Y. Xie, Water Res. 35 (2001) 1599

M. M. Domino, B. V. Pepich, D. J. Munch, P. S. Fair, Y. Xie, Environ. Prot. Agency Cincinnati OH, 2003

B. B. Neto, I. S. Scarminio, R. E. Bruns, How to Make Experiments, Editor Unicamp, Campinas, 2007 (in Portuguese)

L. Meng, S. Wu, F. Ma, A. Jia, J. Hu, J. Chromatogr., A 1217 (2010) 4873

Y.-X. Wang, Q. Zeng, L. Wang, Y.-H. Huang, Z.-W. Lu, P. Wang, M.-J. He, X. Huang, W.-Q. Lu, Environ. Res. 135 (2014) 126

M. J. Cardador, A. Serrano, M. Gallego, J. Chromatogr., A 1209 (2008) 61.




DOI: https://doi.org/10.2298/JSC160412073C

Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)