Validation and application of a GC–MS method for the determination of haloacetic acids in drinking water

Authors

  • Lucas Ulisses Chiavelli State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State
  • Luana Caroline Figueiredo Federal University of Technology-Paraná, Apucarana, Paraná State
  • Rafaela Takako Almeida State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State
  • Thiago Claus State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State
  • Swami Arêa Maruyama State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State
  • Willian Ferreira Costa State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

DOI:

https://doi.org/10.2298/JSC160412073C

Keywords:

Disinfection by-products, gas chromatography, mass spectro¬metry, merit figures

Abstract

Usually, water treatment plants employ chlorine or sodium hypochlo­rite during the disinfection process, ensuring that there are not any pathogenic microorganisms in water. However, chlorine might react with natural organic matter and lead to formation of potentially carcinogenic by-products regarding human health, such as haloacetic acids (HAAs). Several countries regulate the levels of these acids in drinking water. Therefore, their concentrations must be monitored with the greatest accuracy as possible. In order to achieve this goal, a method through gas chromatography coupled with mass spectrometry (GC–
–MS) was validated and applied to the determination of HAAs in samples of water destined to the public water service provision from the city of Maringá, Paraná State, Brazil. Measurements between two periods have close recovery values, indicating that the method has good accuracy during the same day. The limits of detection (LOD) and quantification (LOQ) were satisfactory, with LOD 0.42 μg L-1 and LOQ 1.40 μg L-1 for dichloro­acetic acid (DCAA) analysis. Recovery values obtained for the nine haloace­tics acids (HAA9) corresponded to 69.9–107.3 % for samples. The repeatability performed for two periods presented close relative standard deviation (RSD) values, indi­cat­ing that the method has good accuracy during the same day.

Author Biographies

Lucas Ulisses Chiavelli, State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

Department of Chemistry

Luana Caroline Figueiredo, Federal University of Technology-Paraná, Apucarana, Paraná State

Department of Chemistry

Rafaela Takako Almeida, State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

Department of Chemistry

Thiago Claus, State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

Department of Chemistry

Swami Arêa Maruyama, State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

Department of Chemistry

Willian Ferreira Costa, State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

State University of Maringá, Department of Chemistry, Av. Colombo, 5790, 87020-900. Maringá, Paraná State

References

A. M. Dietrich, K. Phetxumphou, D. L. Gallagher, Water Res. 66 (2014) 63

P. Loubet, P. Roux, E. Loiseau, V. Bellon-Maurel, Water Res. 67 (2014) 187

E. Lenzi, L. O. B. Favero, E. B. Luchese, Introduction to Water Chemistry: Science, life and survival, LTC, Rio de Janeiro, Brazil, 2009 (in Portuguese)

World Health Organization, Guidelines for safe recreational water environments, World Health Organization, Geneva, Switzerland, 2003

X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, L. Chen, X. Liu, Environ. Sci. Technol. 46 (2012) 7342

R. Dyck, R. Sadiq, M. J. Rodriguez, S. Simard, R. Tardif, Water Res. 45 (2011) 5084

S. Richardson, M. Plewa, E. Wagner, R. Schoeny, D. Demarini, Mutat. Res. Mutat. Res. 636 (2007) 178

Y. Drori, Z. Aizenshtat, B. Chefetz, Geoderma 145 (2008) 98

J. A. Pals, J. K. Ang, E. D. Wagner, M. J. Plewa, Environ. Sci. Technol. 45 (2011) 5791

Y. Deng, Y. Zhang, R. Zhang, B. Wu, L. Ding, K. Xu, H. Ren, Environ. Sci. Technol. 48 (2014) 8212

A. D. Nikolaou, S. K. Golfinopoulos, T. D. Lekkas, J. Environ. Monit. 4 (2002) 910

M. Saraji, A. A. H. Bidgoli, J. Chromatogr., A 1216 (2009) 1059

F. J. Santos, M. T. Galceran, J. Chromatogr., A 1000 (2003) 125

Y. Xie, Water Res. 35 (2001) 1599

M. M. Domino, B. V. Pepich, D. J. Munch, P. S. Fair, Y. Xie, Environ. Prot. Agency Cincinnati OH, 2003

B. B. Neto, I. S. Scarminio, R. E. Bruns, How to Make Experiments, Editor Unicamp, Campinas, 2007 (in Portuguese)

L. Meng, S. Wu, F. Ma, A. Jia, J. Hu, J. Chromatogr., A 1217 (2010) 4873

Y.-X. Wang, Q. Zeng, L. Wang, Y.-H. Huang, Z.-W. Lu, P. Wang, M.-J. He, X. Huang, W.-Q. Lu, Environ. Res. 135 (2014) 126

M. J. Cardador, A. Serrano, M. Gallego, J. Chromatogr., A 1209 (2008) 61.

Published

2016-11-26

How to Cite

[1]
L. U. Chiavelli, L. C. Figueiredo, R. T. Almeida, T. Claus, S. A. Maruyama, and W. F. Costa, “Validation and application of a GC–MS method for the determination of haloacetic acids in drinking water”, J. Serb. Chem. Soc., vol. 81, no. 11, pp. 1273-1282, Nov. 2016.

Issue

Section

Analytical Chemistry