Modeling of pure components high pressures densities using CK-SAFT and PC-SAFT equations

Main Article Content

Jovana M. Ilić Pajić
Mirko Z. Stijepovic
Gorica R. Ivaniš
Ivona R. Radović
Jasna T. Stajić-Trošić
Mirjana Lj. Kijevčanin

Abstract

SAFT equations of state have been widely used for the determination of different thermo-physical and phase equilibria properties. In order to use these equations as predictive models it is necessary to calculate the model parameters. In this work CK-SAFT and PC-SAFT equations of state were applied for the correlation of pure compounds densities in the wide ranges of temperature and pressure (288.15–413.15 K and 0.1–60 MPa, respectively). The calculations of densities for n-hexane, n-heptane, n-octane, toluene, dichloromethane and ethanol, under high pressure conditions, were performed with the new sets of parameters determined in this paper by CK-SAFT and PC-SAFT. Very good agreement between experimental and calculated density values was achieved, having absolute average percentage deviations lower than 0.5 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. M. Ilić Pajić, M. Z. Stijepovic, G. R. Ivaniš, I. R. Radović, J. T. Stajić-Trošić, and M. L. Kijevčanin, “Modeling of pure components high pressures densities using CK-SAFT and PC-SAFT equations”, J. Serb. Chem. Soc., vol. 83, no. 3, pp. 331–343, Apr. 2018.
Section
Thermodynamics

References

G. M. Kontogeorgis, G. K. Folas, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories, John Wiley & Sons, Wiltshire, 2010

I. Senol, WASET 5 (11) (2011) 926

L. Hong-Yi, L. Guojie, Fluid Phase Equilibr. 108 (1995) 15

S. S. Mansouri, A. Farsi, V. Shadravan, S. Ghader, J. Mol. Liq. 160 (2011) 94

G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1073

N. I. Diamantonis, G. C. Boulougouris, E. Mansoor, D. M. Tsangaris, I. G. Economou, Ind. Eng. Chem. Res. 52 (2013) 3933

P. Ji, W. Feng,, T. Tan, J. Chem. Eng. Data 52 (2007) 135

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244

M. S. Wertheim, J. Stat. Phys. 35 (1984) 19

M. S. Wertheim, J. Stat. Phys. 35 (1984) 35

M. S. Wertheim, J. Stat. Phys. 42 (1986) 459

M. S. Wertheim, J. Stat. Phys. 42 (1986) 477

C. McCabe, S. B. Kiselev, Ind. Eng. Chem. Res. 43 (2004) 2839

S. H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284

S. S. Chen, A. Kreglewski, Ber. Bunsen-Ges. Phys. Chem. 81 (1977) 1048

W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709

N. Pedrosa, L. F. Vega, J. A. P. Coutinho, I. M. Marrucho, Macromolecules 39 (2006) 4240

Y-H. Fu, S. I. Sandler, Ind. Eng. Chem. Res. 34 (1995) 1897

T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4727

T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4738

A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106 (1997) 4168

C. McCabe, A. Gil-Villegas, G. Jackson, Chem. Phys. Lett. 303 (1999) 27

A. Tihic, G. M. Kontogeorgis, N. von Solms, M. L. Michelsen, Fluid Phase Equilibr. 248 (2006) 29

A. A. Abdussalam, G. R. Ivaniš, I. R. Radović, M. Lj. Kijevčanin, J. Chem. Thermodyn. 100 (2016) 89

N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51 (1969) 635

N. I. Diamantonis, I. G. Economou, Energy Fuels 25 (2011) 3334

B. J. Alder, A. D. Young, M. A. Mark, J. Chem Phys. 56 (1972) 3013

P. Englezos, N. Kalogerakis, Applied parameter estimation for chemical engineers, Taylor & Francis Group, LLC, New York, 2001

S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Boston, MA, 1985

A. Constantinides, N. Mostoufi, Numerical methods for chemical engineers with Matlab applications, Prentice Hall PTR, Upper Saddle River, NJ, 2000

G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1423.

Most read articles by the same author(s)