Modeling of pure components high pressures densities using CK-SAFT and PC-SAFT equations
Main Article Content
Abstract
SAFT equations of state have been widely used for the determination of different thermo-physical and phase equilibria properties. In order to use these equations as predictive models it is necessary to calculate the model parameters. In this work CK-SAFT and PC-SAFT equations of state were applied for the correlation of pure compounds densities in the wide ranges of temperature and pressure (288.15–413.15 K and 0.1–60 MPa, respectively). The calculations of densities for n-hexane, n-heptane, n-octane, toluene, dichloromethane and ethanol, under high pressure conditions, were performed with the new sets of parameters determined in this paper by CK-SAFT and PC-SAFT. Very good agreement between experimental and calculated density values was achieved, having absolute average percentage deviations lower than 0.5 %.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. M. Kontogeorgis, G. K. Folas, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories, John Wiley & Sons, Wiltshire, 2010
I. Senol, WASET 5 (11) (2011) 926
L. Hong-Yi, L. Guojie, Fluid Phase Equilibr. 108 (1995) 15
S. S. Mansouri, A. Farsi, V. Shadravan, S. Ghader, J. Mol. Liq. 160 (2011) 94
G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1073
N. I. Diamantonis, G. C. Boulougouris, E. Mansoor, D. M. Tsangaris, I. G. Economou, Ind. Eng. Chem. Res. 52 (2013) 3933
P. Ji, W. Feng,, T. Tan, J. Chem. Eng. Data 52 (2007) 135
J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244
M. S. Wertheim, J. Stat. Phys. 35 (1984) 19
M. S. Wertheim, J. Stat. Phys. 35 (1984) 35
M. S. Wertheim, J. Stat. Phys. 42 (1986) 459
M. S. Wertheim, J. Stat. Phys. 42 (1986) 477
C. McCabe, S. B. Kiselev, Ind. Eng. Chem. Res. 43 (2004) 2839
S. H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284
S. S. Chen, A. Kreglewski, Ber. Bunsen-Ges. Phys. Chem. 81 (1977) 1048
W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709
N. Pedrosa, L. F. Vega, J. A. P. Coutinho, I. M. Marrucho, Macromolecules 39 (2006) 4240
Y-H. Fu, S. I. Sandler, Ind. Eng. Chem. Res. 34 (1995) 1897
T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4727
T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4738
A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106 (1997) 4168
C. McCabe, A. Gil-Villegas, G. Jackson, Chem. Phys. Lett. 303 (1999) 27
A. Tihic, G. M. Kontogeorgis, N. von Solms, M. L. Michelsen, Fluid Phase Equilibr. 248 (2006) 29
A. A. Abdussalam, G. R. Ivaniš, I. R. Radović, M. Lj. Kijevčanin, J. Chem. Thermodyn. 100 (2016) 89
N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51 (1969) 635
N. I. Diamantonis, I. G. Economou, Energy Fuels 25 (2011) 3334
B. J. Alder, A. D. Young, M. A. Mark, J. Chem Phys. 56 (1972) 3013
P. Englezos, N. Kalogerakis, Applied parameter estimation for chemical engineers, Taylor & Francis Group, LLC, New York, 2001
S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Boston, MA, 1985
A. Constantinides, N. Mostoufi, Numerical methods for chemical engineers with Matlab applications, Prentice Hall PTR, Upper Saddle River, NJ, 2000
G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1423.